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Abstract
This paper analyzes the production process of scientific outputs and its implications on the

U.S. economy using variants of a disaggregated Marshallian Macroeconomic Model (MMM).
Federal spending on scientific activities produces innovation which we measure using the number
of patents awarded. Additionally, this study makes use of the Bass diffusion model to investigate
how innovative patents generate new products that attract new firms in existing sectors of the
U.S. economy. Firms are assumed to be Bayesian learners while forming expectations about
product prices. Using a set of policy simulations, this research provides measured information
on how selected science policies may affect sectoral growth of the U.S. economy. Moreover,
issues such as bifurcation pertaining to dynamic models are thoroughly addressed in this paper.
Among others, our findings suggest that federal spending on applied research has larger short-
run growth enhancement effects than spending on development or basic research. The return of
current federal spending on applied research depends largely on past spending on basic research,
something that is well captured through the lag structure imposed in our model. Recipients of
federal grants for basic research often lay foundation for outstanding applied research.

Keywords: Disaggregated Marshallian Macroeconomic Model; Bass Diffusion Model; Trans-
fer Functions; and Bayesian Learners.

1 Introduction
If we understand that scientific progress in general and technological innovation in particular con-
stitute pillars for long and sustainable economic development, then more consideration ought to
be given to modeling and policy simulations designed to promote and advance the science sector.
Scientific research and development is at the core of increased productivity and increased competi-
tive advantage for emerging world market economies. Knowledge-driven production framework has
generated incommensurable technological advances that have translated into increased wealth, job
creation, substantial improvement in living standard, etc. Advances in science have generated grow-
ing demand for skilled labor-force. It is therefore highly relevant to identify and carefully study how
scientific knowledge is diffused and how it affects economic performance overall.
Researchers have quite often used historical data to study the impact of federal funding on

scientific productivity. Proxies considered in the measurement of scientific productivity vary: the
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most commonly used are 1) the number of publications and their scholarly impact (Adams and
Griliches 1998, Payne and Siow 2003), 2) the number of doctoral students trained, 3) patent citations
(Huang et al 2006), and 4) the number of patents awarded. Yet, the literature contains major
shortcomings that we propose to address in this study.
Market dynamics for products and factors are often ignored in the study of innovation. The

structural forms and techniques used in models of innovation are often characterized by an excessive
use of dummy variables and a lack of market interaction for innovative outcomes (Arora and Gam-
barella, 2005). Whether measured using patents or publications, innovative outcomes, like any other
production factors in the economy, are equilibrium outcomes determined by the interaction of de-
mand and supply factors. It is common knowledge that equilibrium models are far more informative,
produce better fits and predictions than non-equilibrium ones. In this paper, these modeling aspects
are implemented in our use of a Marshallian macroeconomic model (MMM) of the U.S. science sector
which is described in the next section. Also, in the promotion and commercialization of scientific
outputs, patents have played a continuous role. Though, it is widely recognized that patenting alone
does not define innovation; see for example, Harper, S. and Becker, S., 2004, or Griliches, Z. 1990,
among others. Very often, new ideas and inventions are conceived and patented without necessarily
being adapted into new technologies or new products. And even if some patented ideas end up being
used for new products, not all of these products are successful in the market place. Although patents
are often regarded as the dry preserve for innovative activities, they only form part of the innovation
process. Patents numbers can be associated with very valuable inventions leading to successful prod-
ucts or they can be related to inventions of very little value with no success in the market place. Even
harsher questions have been asked when it comes to patenting and its impact on innovation. Are
patents simply genuine property rights or rather some form of superfluous government interference?
Isn’t the patent system just a legal cudgel used to smash competition with devastating effects on
incremental innovation, something that ironically hinders efforts and incentives to develop superior
products? How much do current patents laws and regulations help promote innovative activities
in the U.S.? Although not all these questions could be adequately addressed, this paper provides
a better understanding of 1) the production process of patentable ideas in the U.S. economy; 2)
a good approximation of how patented ideas are transformed into new products; 4) how all that
affects sectoral economic growth; and 5) differential effects that various funding schemes have on in-
novation. Needless to say, innovation usually requires some degree of societal endorsement otherwise
it might be creativity or merely productivity. In an economic context, societal endorsement takes
the form of some degree of success in the marketplace, i.e. commercialization. For example, the
University of Chicago reports that approximately 25 percent of patents are licensed in recent years.
If that is typical of other universities, then it is obvious that the total number of patents used to
measure innovation should be discounted similarly. Lack of data on better measures of innovation
has posed a crucial constraint on this study reason why, as most other studies on innovation, we
could only rely on patent numbers. However, as being very concerned by the matter, for future
research, we have submitted a complete research proposal to the National Science Foundation where
we propose various and improved measures of innovation. At present, in order to address this is-
sue, this study makes use of the growth rate of patents granted while simply assuming that the
proportion of approved patents that are commercialized or licensed does not change substantially
over years. Although, this is a strong assumption that we propose to investigate in further studies
using appropriate data set, e.g. the Association of University Technology Managers. Therefore, the
use of growth rate of approved patents in this study helps reduce substantially measurement bias
of innovation. Using a model that fits the data reasonable well and provide reliable predictions, we
have performed a set of policy simulations that we believe will be of great use to scientists as well
as policy makers.
Having completed our introduction, an overview of the rest of the paper is as follows. The

second section is devoted to a description of our modeling framework and a discussion on bifurcation
boundaries in the MMM. Section III includes fits and forecasts of all the variants of our MMM.

2



Finally, we implement a set of policy shocks aimed at assessing the impact of raised research spending
on the outcome of the U.S. Science sector and the other sectors of the U.S. economy in Section IV
and conclude in section V.

2 Modeling framework and data
The modeling of a U.S. science sector includes a product market for innovation proxied by the
number of patents granted and markets for the production factors; see Zellner and Ngoie (2011)
for a complete development of the MMM. For each of the main inputs, i.e. labor and capital,
there is a market with supply, demand and equilibrium dynamics. As regard to capital, innovative
activities might include prior information and sample information used through Bayes terms to
produce respectively information in posterior distribution of parameters and information in marginal
density of observations. Prior information can be measured through the amount of consultancy work
the sector makes use of while sample information will be the amount of data and other information
such as patent citations available to the researcher. Furthermore, the output as well as input
information is priced to get the profit that is maximized. Due to unavailability of such datasets, the
present study only includes the traditional inputs: labor and capital.
The science sector affects other sectors of the economy through their factor markets. Output

of the science sector, i.e. innovation, constitutes a key input for other sectors. Also, innovative
patents lead to new products that are adopted and introduced in the economy. New products can
be used as such in existing sectors or they can lead to the creation of brand new sectors. In this
paper, we make use of the Bass diffusion model to allow for the introduction and adoption of new
products. Therefore, the entry/exit equation of our MMM contains two types of entrants, (1) firms
that join the sector while attracted by the profit margin on sales of existing products and (2) firms
that have adopted new products and introduce them in the sector. What we call firms here represent
production units involved in innovative activities that generate patents which includes private and
public labs, universities, private companies, etc.

2.1 Supply, Demandand Entry Equations

We assume a Cobb-Douglas specification of the production function and production units are opti-
mizers in the science sector. Although optimization in the production of patents is not only driven
by money, in this study, for simplicity, we do assume that production units involved seek for profit.
Patents granted are either commercialized (and later adapted into new products) or directly adapted
into new products. In both cases, profit is generated.
The optimization process yields the output function for an individual firm. Multiplying output

by the price we obtain the sales supply function for an individual firm and the sector’s sales supply
function is obtained by multiplying individual sales by the total number of firms within the sector
(N).

2.2 Supply Function

SSt = Nt.Pt.A
1

1−α−β−γ−σ−δ
t α

α
1−α−β−γ−σ−δ β

β
1−α−β−γ−σ−δ σ

σ
1−α−β−γ−σ−δ γ

γ
1−α−β−γ−σ−δ r

−β
1−α−β−γ−σ−δ
t

w
−α

1−α−β−γ−σ−δ
t Appl

−γ
1−α−β−γ−σ−δ
t Basic

−σ
1−α−β−γ−σ−δ
t Dev

−δ
1−α−β−γ−σ−δ
t (1)

(α+ β + γ + σ + δ)
α+β+γ+σ+δ

1−α−β−γ−σ−δ
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2.3 Demand Function

Similarly, on multiplying both sides of the consumers’ demand function for output, we have the
following product sales demand function:

SDt = DP 1−θt Y θS
t HθH

t

nY
j=1

X
θj
jt (2)

In the equations above, the letters represent different variables expressed in real terms such as SS
(product real sales), SD (product real demand), A (technological factor productivity), P (product
price), W (real wage), r (interest rate), H (number of demanders of innovation), X (other demand
shifters), π (individual firms profit), Basic (share of basic research funding), Appl (share of Applied
Research funding), Dev (share of Development Research funding), P (output price), Y (personal
disposable income). The technological factor productivity includes outcomes of previous innovative
activities that impact current research efforts.
In a one sector economy with taxes, if there is no money illusion.

2.4 Entry-Exit Function

In our model, we distinguish between two types of firms. First, we have the firms that enter the
industry when economic profits are positive and leave the industry when economic profits are negative
(N1). Second, we have the firms that adopt new products generated from innovation and introduce
them in the market (N2).

N = f(N1, N2)

•
N
1t

N1t
= C

0

E(π
a
t − πt) (3)

The market equilibrium profit within a given sector at time t is represented by πt
A firm’s actual profit πa constitutes a proportion c of its sales supply.

πat = cSSt

The Bass Diffusion model (Bass, 1990) represented below helps derive the S-shaped cumulative
adopter distribution of new products resulting from innovative patents.

N2(t) = ψm0

"
1− e−(p+q)t

1 + q
pe
−(p+q)t

#
(4)

With - m0 number of potential adopters of new products
-ψportion of new adopters joining the sector producing new products
- p the rate of innovation and q the rate of imitation.
Predictive probability density function for expected prices
In our model, we assume that firms or labs are Bayesian learners, they produce based on prices

derived from a predictive probability density function that is developed as follo1tws.Predictive prob-
ability density function for expected prices
In our model, we assume that firms or labs are Bayesian learners, they produce based on prices

derived from a predictive probability density function that is developed as follows.

p(P e
T+1|DT ) =

Z
θ

f(P e
T+1|θ,DT )π(θ|DT )dθ (5)

Where:
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- f(P e
T+1|θ,DT ) represents the pdf;

- π(θ|DT ) is the posterior pdf of θ;
- DT is the past sample and prior information as of time T ;
- θ being the parameter vector included in a parameter space.
Further, we obtain the reduced form dynamic equilibrium function by equating (1) and (2)

while replacing N in (1) by (3) and (4). Optimal input costs are obtained from our factor markets
optimization (see Zellner and Ngoie, 2011). From the reduced form dynamic equilibrium equations
we now derive our transfer equations.

2.5 Transfer functions

We have derived mathematically our transfer functions from the dynamic linear structural equation
models referred above. Referring to Quenouille (1957) we can represent a linear multiple time series
process as follows (see Zellner and Palm, 2004).

H(L) zt
mx1

= F (L)
mxm

εt
mx1

(6)

where (i) zt = (z1t, z2t, ..., zmt) is a vector of random variables, and (ii) εt = (ε1t, ε2t, ..., εmt) is the
random error vector. H(L) and F (L) are the full rank matrices with polynomial lag operators as
elements. Then we allow zt = (yt, xt) with yt as vector of the endogenous variables and xt the vector
of the exogenous variables. Then (6) becomes∙

H11(L) H12(L)
H21(L) H22(L)

¸ ∙
yt
xt

¸
=

∙
F11(L) F12(L)
F21(L) F22(L)

¸ ∙
ε1t
ε2t

¸
Assuming xt as exogenous, the system can be written as follows.

H21(L) = 0, F12(L) = 0 and F21(L) = 0 yt,

H11(L)yt +H12(L)xt = F11(L)ε1t (7)

H22(L)xt = F22(L)ε2t (8)

From the system above, we derive the transfer functions by multiplying both sides of (8) by H−111 to
obtain

yt = −H−111 H12(L)xt +H−111 F11ε1t (9)

From H−111 =
Hadj
11

|H11| , (10) can be expressed as

|H11|yt = −Hadj
11 H12(L)xt +Hadj

11 F11(L)ε1t

Transfer functions for the endogenous variables in our MMM-DA are obtained from (9) with

H11 =

⎡⎣ 1 −λ(L) −1
1 −γ(L) 0
0 0 1

⎤⎦ and H−111 =
1

|H11|

⎡⎣ −γ(L) λ(L) −γ(L)
−1 1 −1
0 0 λ(L)− γ(L)

⎤⎦

Therefore: Hadj
11 =

⎡⎣ −γ(L) λ(L) −γ(L)
−1 1 −1
0 0 λ(L)− γ(L)

⎤⎦
where λ(L) and γ(L)are polynomial lag operators.

5



2.6 Data

The model was estimated using data obtained from the Bureau of Economic Analysis (BEA) for
economic indicators and the U.S. Patents and Trademark Office (USPTO) for data on patents count.
The Bureau of Economic Analysis produces high-quality statistics covering all aspects of the U.S.
economic activities with international, domestic, sectoral and industry data that amply satisfied our
data needs. Data series on research spending were also obtained from the BEA data base. These
simply reflect the nominal spending in dollar amount on the three components: development, applied
and basic research.

2.7 Bifurcation boundaries in the MMM

When it comes to bifurcation issues, dynamic models have parameter spaces that are stratified
into several subsets while each subset contains a different dynamic solution. At present, regression
analysis remains unable to provide parameters with certainty. Therefore, the uncertainty surround-
ing parameters leads to more uncertainty about bifurcation boundaries linked to the parameter space
(Barnett, 2008). Without a clear knowledge of these boundaries, it is unconceivable to understand
what happens in the confidence region. It is not possible to determine how much of these bound-
aries actually cross the confidence region. This causes substantial damages to robustness of inference
drawn from dynamic models.
Bifurcation causes major changes in the quality of solutions in dynamic modeling due to changes

in parameter values. Usually, quantitative changes in solution features of dynamic models tend to
be more acceptable instead of qualitative changes, i.e. convergence (monotonic to non-monotonic,
etc). At a point of bifurcation, minor alterations in quantitative features of the solutions are much
more sensitive to parameter changes. Henceforth, the use of parameter changes to assess the impact
of policy shifts using the model might lead to undependable results.
One of the most common forms of bifurcation impinging on economic models is the Hopf bifurca-

tion. Within a neighborhood of the boundary, point estimation becomes critical due to oscillations.
Let a continuous dynamic system (Barnett et al. 2008, Banerjee 2011).

ẋ = f(x), x�<n

With x0 an equilibrium of the system and M , the Jacobian matrix df/dx evaluated at x0.
Let the numbers of eigenvalues of A with negative real be n_; with zero real be n0; and with

positive real be n+.
Definition 1
We have an hyperbolic equilibrium when n0 = 0. It means no eigenvalues on the imaginary axis

or unit circle.
E.g. Let the following two dynamical systems

ẋ = f(x,α), x�<n, α�<m (10)

ẏ = g(y, β), y�<n, β�<m (11)

Definition 2
We can say that (10) is topologically equivalent to (11) if:
- there is existence of a homeomorphism of the parameter space;

p : <m → <m, β = p(α)

- there is a parameter-dependent homeomorphism of the phase space hα : <n → <n, y =
hα(x) which maps the system’s orbits at parameter values β = p(α) while preserving the time
direction.
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Definition 3
Presence of topologically non-equivalent phase portrait under variation of parameters is called

bifurcation. Also, at the non-hyperbolic points, sufficiently small perturbations of parameters lead
to changes in structural stability.
Definition 4
A transcritical bifurcation occurs when a system has non-hyperbolic equilibrium with a geomet-

rically simple zero eigenvalue at the bifurcation point with additional transversality conditions.
Let the reduced form of the one sector MMM (see Zellner and Ngoie, 2011).

Ṡt
St
= b

Ṡt
St
+ CE(St − πet ) + c (12)

with

c =
Ȧt

At
+ {α[γh(1− θ) + γ + γs]/(1 + γ) + β[φh(1− θ) + φ+ φs]/(1 + φ)− θh}/δ(1− θ)

...+ α
dX

j=1

γj
żj
z
/δj(1 + γ) + β

nX
j=1

δj
v̇j
vj
/δ(1 + φ) +

mX
j=1

[θj/δ(1− θ)]

Ã
Ẋj

Xj

!
[α(γ + γs)/(1 + γ)

...+ β(φ+ φs)/(1 + φ)− 1] (13)

and

b =

½
1− θs − α[(1− θ)(1− γs) + (1− θ)(γ + γs)]/(1 + γ)
−β[(1− θ)(1− φs) + (1− θs)(φ+ φs)]/(1 + φ)

¾
/δ(1− θ) (14)

The logistic equation can be expressed as

dS

dt
= k1S

µ
1−

µ
k2
k1

¶
S

¶
(15)

k1 =
g − CEπ

e

1− b

k2 =
−CE

1− b

We note that (12) has two equilibrium a values s = 0 and S = k1
k2
.

Solution S = k1
k2
is unstable for positive values of k1 and k2.

For constant parameters there are no cyclical movements and for discrete lags there is mixed
differential-difference equation that can produce cyclical solutions.
Also, there is a branching point at (S, k1) = (0, 0)

3 Results
In this results’ section, we explore the fit as well as forecasting performance of our one-sector MMM
of the U.S. science sector, the 16-sector MMM-DA with innovative activities not modeled, and the
17-sector MMM-DA where innovative activities modeled through the science sector included as a
separate sector that impact other sectors through their factor markets.
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3.1 One-Sector MMM of the U.S. science sector with output measured
using the number patents

As described above, the one-sector MMM of the U.S. science sector is modeled using patents as
output.As shown in Fig. 3, we make use of the Baxter-King filter to better appraise the salient
characteristics of cycles, trends and frequency responses in the total number of patents approved
over the years in the U.S.
Although the concept ‘cycle’ is a misnomer insofar as no sole periodic behavior is observable in a

given economy, filtering process are of great use in identifying some of the non-unique periodicities
that exist. Fig. 3 depicts the cyclicality of the number of patents and portrays to some large extent
regularities of long standing (Zarnowitz, 1992). Indeed, we observe large variations of fluctuations
in amplitude, scope and frequency, yet they are persistent and some commonalities that can be
extracted. Also, we have obtained satisfactory results for the frequency response function which
seems to stabilize over the periods.More measures of productivity related to the science sector are
reported using figures in the Appendix.
Fig 4 portrays fits of our transfer function of the one-sector MMM of the U.S. science sector.

Fitness in itself can be misleading in macroeconomic modeling. Issues such as overparameterization
can lead to remarkable fit even though the model used is unreliable. To this regard, we have
performed generic statistical testing and produce forecasts. Below, we made report values of Mean
Absolute Forecast Errors (MAFE) and Root Mean Square Forecast Errors (RMSFE) in assessment
to the accuracy of our forecasts. The choice between existing measures of accuracy in forecasting
is driven by the conception of types and amplitude of errors and how they affect the forecast (see
Zarnowitz, 1999). For example, the MAE will be used when the size of the difference between
predicted and actual values is the only determinant of the loss. However, if we are more concerned
by larger errors (positive or negative), the RMSE is recommended. When both matter, the size of
the difference as well as the sign of the errors, the loss function will be asymmetric.
Beside the fact that our MMM of the U.S. science sector fits remarkably well the data, its

forecasting performance is commendable. While noting that the forecasting period is relatively
short — eight years only - the MAFE and RMSFE are indeed really small and the model is able to
forecast 100 percent of all the turning points.

3.2 16-Sector MMM-DA of the US economy without special considera-
tion of the science sector as input to other sectors

The 16-sector MMM-DA is a disaggregated model with 16 sectors of the U.S. economy as per the
BEA (Bureau of Economic Analysis) classification. Innovative activities are not modeled here.
a) Fitted transfer equations (see Zellner and Ngoie, 2011)

|H11|x1it = −Hadj
11 H12(L)x2it +Hadj

11 F11(L)ε1it

where x1it = (sit, pit, nit)0 is the vector of endogenous variables, x2it = (wit, rit,m2tspt,
ctaxit, yt, opent, ht)

0 is the vector of exogenous variables, and ε1it = (μ1it, μ2it, μ3it) is the vector
of error terms. Again, in this study, for our 16-sector MMM-DA we only fit one of the three transfer
functions for each sector of the US economy, sit.
Table 1 depicts MAEs and RMAEs obtained from fitting our transfer equations for the 16 sectors

of the U.S. economy. Both errors are relatively low indicating a good fit. In Table 2, there errors are
compared with the one obtained from the 17-sector MMM-DA. These results prop up our hypothesis
that modeling innovative activities improve substantially fits and forecasts of our MMM-DA.
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3.3 17-Sector MMM-DA of the US economy with special consideration
of the impact of advances in science sector on other sectors of the
U.S. economy

For the 17-sector MMM-DA, we have modeled both 16 sectors plus the science sector using seemingly
unrelated regressions of the transfer functions. However, outcomes of the science sector, which is
the number of patent granted, are adapted into new products, a process captured using the Bass
diffusion model. Results obtained using model innovative activities only fit one of the three transfer
functions for each sector of the U.S. economy.
Comparing Table 1 and 2, we realize that the use of science as an additional sector that supplies

inputs to other sectors of the economy helps reduce forecasting errors for all the sectors of the U.S.
economy.

4 Policy shocks per sector
In this section, we have implemented a set of policy shocks aimed at assessing the impact of raised
research spending on the outcome of the U.S. Science sector.
In Table 3 we introduce a set of reforms (1 and 5 percentage points increase) on spending for

Basic Research, Applied Research and Development and present their impact on the growth rate
of the total number of patents approved. As expected, increasing spending on Applied Research
produces much larger short-run effects than other increases. Applied Research has faster impact on
scientific outputs than other research components. Also, we can see that Corporate Income Tax cut
provides large incentive for research development.
In Table 4, we present the effects of increased scientific outputs (one percentage point shock) on

other sectors of the U.S. economy. Overall, advances in science have a positive impact on all the
sectors of the U.S. economy although the amplitude of the effects differs from one sector to another.
Most numbers seem obvious and easy to reconcile with general expectations although further work
need to be done to deeper disentangle the pure effects generated by the shocks from other market
and non-market adjustment effects.

5 Conclusion
In this paper we have analyzed the production process of scientific outputs i.e. innovation, proxied by
the growth rate of approved patents and its implications on the overall U.S. economy using variants
of a disaggregated Marshallian Macroeconomic Model (MMM). We have modeled the U.S. science
sector using a one-sector MMM that fits the data and provides reliable forecasts. Moreover, we have
embedded science as an additional sector in our 17-sector MMM of the overall U.S. economy. We
understand the need for a model to include new products that originate from innovative patents.
To this regard, we made use of the Bass diffusion model and obtained improved fits and forecasts.
Introducing innovation and its effects on adopters of new products significantly improves macro-
economic modeling performance overall. Also, we have assumed that firms use expected product
prices and form their expectations as Bayesian learners. Throughout a set of policy simulations,
this research provides measured information on how selected science policies i.e. public spending on
research (Basic, Applied and Development) versus corporate tax cut, affect the science sector and
the U.S. economy overall. Both variants of our MMM have been estimated using transfer functions.
We are aware that further disaggregation of the science sector is much needed for a better

investigation of the production process of scientific outputs. Therefore, in future work, we propose
to disaggregate the science sector into public versus private operating units, academic versus non-
academic based units, etc.
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Table 1 - MAEs and RMSEs Forecasted by Industrial Sectors 

 

 

         Errors Based on 

Forecasted Values
*
 

Sector MAE RMSE 

   
_Arts, entertainment, recreation, accommodation, food service_ 0.90 % 1.17 % 

_Construction_ 2.13 % 3.08 % 

_Education_ 1.09 % 1.01 % 

_Finance, Insurance, Real Estate, Rental, Leasing_ 0.82 % 1.06 % 

_Government_ 0.54 % 0.72 % 

_Health_ 1.26 % 1.69 % 

_Information_ 2.37 % 2.87 % 

_Manufacturing_ 1.45 % 1.79 % 

_Mining_ 3.11 % 3.96 % 

_Other services, except Government_ 0.79 % 1.07 % 

_Professional and Business Services_ 1.13 % 1.55 % 

_Retail Trade_ 1.70 % 2.16 % 

_Transportation and Warehousing_ 1.02 % 1.26 % 

_Utilities_ 3.06 % 3.64 % 

_Wholesale Trade_ 2.80 % 3.62 % 

_Agriculture_ 5.15 % 5.92 % 

 

 

Table 2 - MAEs and RMSEs Forecasts by Industrial Sectors 

 

 

         Errors Based on Fitted 

Values
*
 

Sector MAE RMSE 

   
_Arts, ent., recreation, accommodation, food service_ 0.89 % 1.21 % 

_Construction_ 1.07 % 1.57 % 

_Education_ 0.76 % 1.01 % 

_Finance, Insurance, Real Estate, Rental, Leasing_ 0.77 % 0.90 % 

_Government_ 0.20 % 0.28 % 

_Health_ 0.87 % 1.10 % 

_Information_ 2.03 % 2.54 % 

_Manufacturing_ 0.97 % 1.22 % 

_Mining_ 2.83 % 3.28 % 

_Other services, except Government_ 0.60 % 0.72 % 

_Professional and Business Services_ 1.09 % 1.30 % 

_Retail Trade_ 1.66 % 2.08 % 

_Transportation and Warehousing_ 1.05 % 1.18 % 

_Utilities_ 2.78 % 3.59 % 

_Wholesale Trade_ 2.42 % 3.02 % 

_Agriculture_ 5.05 % 5.90 % 
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Table 3 – U.S. Science Total Patents in Growth Terms Resulting from Implemented Reforms  

 

Reform types  Reform Size  

(percentage point) 

No. of patents in growth terms  

(percentage point after 1 year) 

Increase Basic Research 1   1.32 (1.11)   

5 5.71 (1.29)   

Increase Applied Research  1  4.69 (1.98)   

5  15.01 (2.11)   

Increase Development  1  0.83 (0.91)   

5  4.01 (1.19)   

Cut Corporate Income Tax 1 

5 

4.01 (1.51) 

18.2 (2.05) 

  

 

Note: Table 3 presents elasticities on the policy variables used for the reform. Estimates have been 

obtained using the one-sector MMM transfer function of the US economy with the three additional 

research inputs. The values in parentheses represent the predictive standard errors corresponding to each 

shock
1
. 

 

 

 

Table 4 -- Estimated One-Year Effects of Science Output on Sectors of the U.S. Economy: Reforms 

are implemented in 2007  

 

Sector 

Percentage point increase in the 

sector’s annual GDP growth rate 

  
  _Agriculture_ 1.16 (0.16) 

_Arts, entertainment, recreation, accommodation, food service_ 0.32 (0.26) 

_Construction_ 0.39 (0.68) 

_Education_ 2.60 (0.31) 

_Finance, Insurance, Real Estate, Rental, Leasing_ 1.08 (0.23) 

_Government_ 1.47 (1.60) 

_Health_ 4.09 (0.36) 

_Information_ 9.21 (0.61) 

_Manufacturing_ 7.65 (0.39) 

_Mining_ 0.77 (0.86) 

_Other services, except Government_ 2.58 (0.22) 

_Professional and Business Services_ 2.10 (0.33) 

_Retail Trade_ 1.03 (0.47) 

_Transportation and Warehousing_ 0.78 (0.31) 

_Utilities_ 0.29 (0.79) 

_Wholesale Trade_ 1.39 (0.43) 

  
   

Note: These results have been obtained using iterative seemingly unrelated regressions of our 17-sector 

MMM and values in parentheses represent standard errors.  

 

 

 

  

                                                           
1
 The predictive standard errors constitute summarized measure of the estimated variance of the equation’s residual.  
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Fig. 1 – Branching of the MMM reduced form 

 
 

 

Fig.2 – Stability of equilibrium solutions 
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Fig.3 - Trend, Cycle and Frequency Response Function for Total Number of Patents Delivered in the US 

Economy from 1953 to 2008 

 
 

 

Fig. 4 - Actual, Fit and Residuals of the one-sector MMM of the U.S. science sector, 1988-2008 

No. of patents (growth rate) 

 
                    Year 

 

 

Fig. 5 - One-Year Ahead Forecast of the one-sector MMM of the U.S. science sector, 2000 – 2008 

 

MAFE = 1.63 percentage points 

RMSFE = 1.91 percentage points 
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APPENDIX 
 

 

SOME MEASURES OF PRODUCTIVITY OF THE SCIENCE SECTOR IN THE US 

 

 
 

Source: NSF 

Description: The graph shows the number of articles in Science and Engineering produced in the US 

between 1998 and 2007 by type of institution performing the research. 

 

 

 

 
 

Source: NSF 

Description: The graph shows the number of articles in Science and Engineering produced in the US per 

billion dollars (constant dollars of 2000) spent on research between 1998 and 2007 by type of institution 

performing the research.  
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Source: United States Patent and Trademark Office 

Description: The graph shows the total number of patents awarded to US institutions/citizens between 

1953 and 2007.  

 

 

 

 
 

Source: United States Patent and Trademark Office, NSF 

Description: The graph shows the total number of patents awarded to US institutions/citizens per dollar 

spent on research (constant dollars of 2000) between 1953 and 2007.  
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Source: United States Patent and Trademark Office, NSF 

Description: The graph shows the total number of patents awarded to US institutions/citizens and the 

number of Science & Engineering Journal Articles produced in the US between 1995 and 2007 per 

researcher. The number of researchers is calculated as FTE employees. 

 

 

 

PRODUCTIVITY OF THE SCIENCE SECTOR IN US UNIVERSITIES PUBLIC vs PRIVATE 

 

 
 

Source: Center for Measuring University Performance 

Description: The graph shows the value of the research produced by public and private universities 

between 1996 and 2006.  
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Source: Center for Measuring University Performance 

Description: The graph shows the value of the research produced by public and private universities per 

institution reporting any research activity between 1996 and 2006.  

 

 

 

 
 

Source: Center for Measuring University Performance, NSF 

Description: The graph shows the value of the research produced by public and private universities per 

billion dollars spent on research (constant dollars of 2000) between 1996 and 2006.  
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Source: Center for Measuring University Performance, NSF 

Description: The graph shows the value of the research produced by public and private universities per 

billion dollars spent on research funded by the government (constant dollars of 2000) between 1996 and 

2006.  

 

 

 

 
 

Source: United States Patent and Trademark Office, NSF 

Description: The graph shows the number of patents per institution reporting patenting activity by public 

and private universities between 1981 and 2003. 
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Source: United States Patent and Trademark Office, NSF 

Description: The graph shows the number of patents per existing institution by public and private 

universities between 1981 and 2007. 

 

 

 

 
 

Source: United States Patent and Trademark Office, NSF 

Description: The graph shows the number of patents per billion dollar spent (constant dollars of 2000) by 

public and private universities between 1985 and 2007. 
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