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Abstract

This paper models the empirical phenomenon of persistent “fifty-fifty”probability

judgements within a dynamic non-additive Savage framework. To this purpose I

construct a model of Bayesian learning such that an agent’s probability judgement

is characterized as the solution to a Choquet expected utility maximization prob-

lem with respect to a conditional neo-additive capacity. Only for the non-generic

case in which this capacity degenerates to an additive probability measure, the

agent’s probability judgement coincides with the familiar estimate of a Bayesian

statistician who minimizes a quadratic (squared error) loss function with respect

to an additive posterior distribution. In contrast, for the generic case in which

the capacity is non-additive, the agent’s probability judgements converge through

Bayesian learning to the unique fuzzy probability measure that assigns a 0.5 prob-

ability to any uncertain event.
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1 Introduction

Let us consider two opposite benchmark cases of how agents form and revise probability

judgements. On the one hand, there is the statistically sophisticated agent whose learn-

ing process is described by additive Bayesian estimates that are updated in accordance

with Bayes’rule. On the other hand, there is the statistically ignorant agent who at-

taches a fifty percent chance to any uncertain event whereby he sticks to this probability

judgement regardless of any new information. Such persistent “fifty-fifty”answers are

well-documented within the literature on focal point answers in economic surveys (Hurd

2009; Kleinjans and Van Soest 2010; Manski and Molinari 2010; van Santen et al. 2012)

as well as within the psychological literature (Bruine de Bruin et al. 2000; Wakker 2004;

Camerer 2007). Wakker (2010) interprets “fifty-fifty”judgements as an extreme case of

cognitive likelihood insensitivity; more specifically, he writes:

“Likelihood insensitivity can be related to regression to the mean. It

is not a statistical artifact resulting from data analysis with noise, though,

but it is a psychological phenomenon, describing how people perceive and

weight probabilities in decisions. In weighting probabilities, a regression to

the mean takes place, with people failing to discriminate suffi ciently between

intermediate probabilities and taking them all too much as the same (“50-

50”, “don’t know”). (p. 228).

Given that likelihood insensitivity corresponds, in theory, to a very large domain

of possible probability judgements, the question arises why “fifty-fifty”judgements are

the predominant empirical expression of likelihood insensitivity. This paper proposes

a decision theoretic explanation of this “fifty-fifty” phenomenon. To this purpose I

construct a model of non-additive Bayesian learning of probability judgements which

formally encompasses the sophisticated as well as the ignorant agent as complementary

special cases. Because my formal approach can be completely interpreted in terms of

behavioral axioms, it aims at “opening the black box of decision makers instead of

modifying functional forms”(Rubinstein 2003, p. 1207).

My point of departure is the formal description of probability judgements as preference-

maximizing acts in a Savage (1954) world. Let the state space be given as

Ω = Θ× I (1)

with generic element ω ≡ (θ, i). Θ = (0, 1) denotes the parameter space of all possible

“true” probabilities. I denotes the information space. Endow Θ with the Euclidean

metric and denote by B the corresponding Borel σ-algebra on Θ. Furthermore, fix some
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topology on I and denote by I the corresponding Borel σ-algebra. The relevant event
space F is then defined as the standard product algebra B⊗I. Define by θ̃ (θ, i) = θ the

F-measurable random variable that gives for every state of the world the true probability
and by I = Θ × A with A ∈ I some information in F . For a given constant x ∈ (0, 1)

define now the F-measurable Savage act fx : Ω → R such that fx (ω) = x − θ. We

interpret fx as the Savage act of “making the probability judgement x”whereby the

outcome of this act in state ω = (θ, i) is defined as the difference between x and the

true probability θ. If the agent satisfies Savage’s (1954) axioms, then there exists a

von Neumann Morgenstern (vNM) utility function u : R → R, unique up to a positive
affi ne transformation, and a unique additive probability measure µ on (Ω,F) such for

all Savage acts g, f and for all I ∈ F :

f �I g ⇔ E
[
u (f (ω)) , µ

(
θ̃ | I

)]
≥ E

[
u (g (ω)) , µ

(
θ̃ | I

)]
. (2)

That is, under the Savage axioms the agent’s preferences over acts conditional on infor-

mation I have an expected utility (=EU) representation with respect to the subjective

additive conditional probability measure µ
(
θ̃ | I

)
. In a next step, let us assume that

the agent’s vNM utility function is given as a negative quadratic function implying for

probability judgements

u (fx (ω)) = − (x− θ)2 . (3)

The solution to the maximization problem

x∗I = arg sup
x∈(0,1)

E

[
−
(
x− θ̃

)2

, µ
(
θ̃ | I

)]
, (4)

i.e., the agent’s revealed probability judgement, then coincides with the classical Bayesian

point estimate that results from the minimization of the expected value of a quadratic

(=squared error) loss function with respect to the posterior distribution µ
(
θ̃ | I

)
, (cf.,

Girshick and Savage 1951; James and Stein 1961).

The familiar Bayesian estimate (4) will be recovered in my model as the special case

that describes the revealed probability judgement of the sophisticated agent. In order

to describe both, the sophisticated and the ignorant, agents within a unified model,

I generalize the above framework to a Savage world in which the agents are Choquet

expected utility (=CEU) rather than EU maximizers. Behavioral axioms that give rise

to a CEU representation were first presented in Schmeidler (1989) within the Anscombe

and Aumann (1963) framework, which assumes preferences over objective probability

distributions. Subsequently, Gilboa (1987) as well as Sarin and Wakker (1992) have

presented behavioral CEU axiomatizations within the Savage (1954) framework, assum-

ing a purely subjective notion of likelihood. From a mathematical perspective, CEU
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theory is an application of fuzzy measure theory such that the integration with re-

spect to a fuzzy (=non-additive) probability measure is characterized by a comonotonic,

positive homogeneous and monotonic functional (cf., Schmeidler 1986; Grabisch et al.

1995; Murofushi and Sugeno 1989, 1991; Narukawa and Murofushi 2003, 2004; Sugeno

et al. 1998; Narukawa et al. 2000, 2001; Narukawa 2007). From the perspective of

behavioral decision theory, CEU theory is formally equivalent to cumulative prospect

theory (=CPT) (Tversky and Kahneman 1992; Wakker and Tversky 1993; Basili and

Chateauneuf 2011) whenever CPT is restricted to gains. CPT, in turn, extends the cele-

brated concept of original prospect theory by Kahneman and Tversky (1979) to the case

of several possible gain values in a way that satisfies first-order stochastic dominance.

If an agent has CEU preferences in a conditional Savage world, we obtain as a

generalization of (2) that for all Savage acts g, f and for all I ∈ F

f �I g ⇔ EC
[
u (f (ω)) , κ

(
θ̃ | I

)]
≥ EC

[
u (g (ω)) , κ

(
θ̃ | I

)]
(5)

where EC denotes the Choquet expectation operator with respect to a subjective non-

additive conditional probability measure κ (· | I). Under the assumption of a quadratic

vNM function (3), the CEU agent’s revealed probability judgement is then given as the

solution to the maximization problem

xCI = arg sup
x∈(0,1)

EC

[
−
(
x− θ̃

)2

, κ
(
θ̃ | I

)]
. (6)

Unlike (4) the CEU maximization problem (6) does, in general, not allow for an ana-

lytically convenient solution because EC is non-linear and, while being continuous, it is

no longer differentiable everywhere. As a consequence, the global maximum of (6) is no

longer uniquely characterized by a first-order condition (FOC).

To derive an analytical solution to problem (6), I am going to restrict attention to a

convenient subclass of conditional non-additive probability measures. First, I restrict at-

tention to non-additive probability measures given as neo-additive capacities in the sense

of Chateauneuf et al. (2007). Neo-additive capacities reduce the potential complexity of

non-additive probability measures in a very parsimonious way (i.e., two additional para-

meters only) such that important empirical features (e.g., inversely S-shaped probability

transformation functions) are portrayed (cf. Chapter 11 in Wakker 2010). Second, I as-

sume that these neo-additive capacities are updated in accordance with the Generalized

Bayesian update rule (Pires 2002; Eichberger et al. 2006; Siniscalchi 2011). Among

the many perceivable Bayesian update rules for non-additive probability measures, the

Generalized Bayesian update rule has convenient technical and empirical features.

Having derived a comprehensive analytical solution (Theorem 1) to the CEU maxi-

mization problem (6), I study a model of Bayesian learning where the agent can observe
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an arbitrarily large amount of statistically relevant (i.i.d. sample) information. As this

paper’s main conceptual findings (Theorem 2), I demonstrate:

1. Only for the non-generic case in which the neo-additive capacity reduces to an

additive probability measure, the agent’s probability judgement converges almost

surely to the event’s true probability.

2. For the generic case in which the neo-additive capacity is non-additive, the agent’s

probability judgement about any uncertain event converges everywhere to 0.5.

The remainder of the analysis proceeds as follows. Section 2 recalls concepts from

Choquet decision theory. Section 3 presents the analytical solution to the CEU maxi-

mization problem. The Bayesian learning model is constructed in Section 4. Section 5

concludes.

2 Preliminaries

2.1 Neo-additive capacities and Choquet integration

Fix the measurable space (Ω,F) and a set of null events N ⊂ F . A fuzzy probability
measure κ : F → [0, 1] satisfies

(i) κ (A) = 0 for A ∈ N ,
(ii) κ (A) = 1 for A such that Ω\A ∈ N ,
(iii) κ (A) ≤ κ (B) for A,B such that A ⊂ B.

For reasons of analytical tractability we focus on non-additive probability measures

defined as neo-additive capacities (Chateauneuf et al. 2007).

Definition. Fix some parameters δ, λ ∈ [0, 1]. A neo-additive capacity ν : F → [0, 1]

is defined as

ν (A) = δ · νλ (A) + (1− δ) · µ (A) (7)

for all A ∈ F such that µ is some additive probability measure satisfying

µ (A) =

{
0 if A ∈ N
1 if Ω\A ∈ N

(8)

and the non-additive probability measure νλ is defined as follows

νλ (A) =


0 iff A ∈ N
λ else

1 iff Ω\A ∈ N .
(9)
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Throughout this paper I restrict attention to sets of null-events N such that A ∈ N
iff µ (A) = 0. If 0 < µ (A) < 1, we call A essential. As a consequence, the neo-additive

capacity (7) simplifies to

ν (A) = δ · λ+ (1− δ) · µ (A) (10)

for essential A. The parameter δ is interpreted as an ambiguity or insensitivity parameter

whereas the value of λ determines whether ν (A) over- or underestimates the additive

probability µ (A).

The Choquet integral of a bounded F-measurable function f : Ω→ R with respect to
capacity κ is defined as the following Riemann integral extended to domainΩ (Schmeidler

1986):

EC [f, κ] =

∫ 0

−∞
(κ ({ω ∈ Ω | f (ω) ≥ z})− 1) dz +

∫ +∞

0

κ ({ω ∈ Ω | f (ω) ≥ z}) dz.

(11)

Proposition 1. Let f : Ω → R be an F-measurable function with bounded range.
The Choquet expected value (11) of f with respect to a neo-additive capacity (7)

is given as

EC [f, ν] = δ (λ sup f + (1− λ) inf f) + (1− δ)E [f, µ] . (12)

Proof: By an argument in Schmeidler (1986), it suffi ces to restrict attention to a
non-negative function f so that

EC [f, ν] =

∫ +∞

0

ν ({ω ∈ Ω | f (ω) ≥ z}) dz, (13)

which is equivalent to

EC [f, ν] =

∫ sup f

inf f

ν ({ω ∈ Ω | f (ω) ≥ z}) dz (14)

since f is bounded. We consider a partition Pn, n = 1, 2, ..., of Ω with members

Akn = {ω ∈ Ω | ak,n < f (ω) ≤ bk,n} for k = 1, ..., 2n (15)

such that

ak,n = [sup f − inf f ] · (k − 1)

2n
+ inf f (16)

bk,n = [sup f − inf f ] · k
2n

+ inf f . (17)
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Define the step functions an : Ω→ R and bn : Ω→ R such that, for ω ∈ Akn, k = 1, ..., 2n,

an (ω) = ak,n (18)

bn (ω) = bk,n. (19)

Obviously,

EC [an, ν] ≤ EC [f, ν] ≤ EC [bn, ν] (20)

for all n and

lim
n→∞

EC [bn, ν]− EC [an, ν] = 0. (21)

That is, EC [an, ν] and EC [bn, ν] converge to EC [f, ν] for n→∞. Furthermore, observe
that

inf an = inf f for all n, and (22)

sup bn = sup f for all n. (23)

Since limn→∞ inf bn = limn→∞ inf an and EC [bn, µ] is continuous in n, we have

lim
n→∞

EC [bn, ν] = δ
(
λ lim
n→∞

sup bn + (1− λ) lim
n→∞

inf bn

)
+ (1− δ) lim

n→∞
EC [bn, µ](24)

= δ (λ sup f + (1− λ) inf f) + (1− δ)EC [f, µ] . (25)

In order to prove Proposition 1, it therefore remains to be shown that, for all n,

EC [bn, ν] = δ (λ sup bn + (1− λ) inf bn) + (1− δ)EC [bn, µ] . (26)

Since bn is a step function, (14) becomes

EC [bn, ν] =
∑
Akn∈Pn

ν
(
A2n

n ∪ ... ∪ Akn
)
· (bk,n − bk−1,n) (27)

=
∑
Akn∈Pn

bk,n ·
[
ν
(
A2n

n ∪ ... ∪ Akn
)
− ν

(
A2n

n ∪ ... ∪ Ak−1
n

)]
, (28)

implying for a neo-additive capacity

EC [bn, ν] = sup bn
[
δλ+ (1− δ)µ

(
A2n

n

)]
+

2n−1∑
k=2

bk,n (1− δ)µ
(
Akn
)

(29)

+ inf bn

[
1− δλ− (1− δ)

2n∑
k=2

µ
(
Akn
)]

= δλ sup bn + (1− δ)
2n∑
k=1

bk,nµ
(
Akn
)

+ inf bn [δ − δλ] (30)

= δ (λ sup bn + (1− λ) inf bn) + (1− δ)EC [bn, µ] . (31)

�
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2.2 Bayesian Updating of non-additive probability measures

Recall that a Savage act f maps Ω into a set of consequences R, i.e., f : Ω → R. For
complements I,¬I ∈ F and acts f, h, define the following Savage act

fIh (ω) =

{
f (ω) for ω ∈ I
h (ω) for ω ∈ ¬I.

(32)

Key to the expected utility representation (2) for preferences � over Savage acts is the
sure thing principle stating that, for all Savage acts f, g, h, h′ and all events I ∈ F ,

fIh � gIh ⇒ fIh
′ � gIh

′. (33)

CEU theory has been developed in order to accommodate paradoxes of the Ellsberg

(1961) type which show that real-life decision-makers violate Savage’s sure thing prin-

ciple. Abandoning of the sure thing principle gives rise to several perceivable Bayesian

update rules for non-additive probability measures (Gilboa and Schmeidler 1993; Sarin

and Wakker 1998; Pires 2002; Eichberger et al. 2006; Siniscalchi 2011). To see this recall

that a Bayesian update rule specifies how the ex ante preference ordering � determines,
for all essential I ∈ F , the ex post preference ordering �I . Consider, e.g., I, h-Bayesian
update rules in the sense that there exists for every essential I ∈ F and every pair of

Savage acts f, g some Savage act h such that

fIh � gIh⇒ fIh
′ �I gIh′′ for all h′, h′′. (34)

In case the sure thing principle is satisfied, the specification of h in (34) does not

matter for deriving ex post preferences. In the case of CEU preferences, however, differ-

ent specifications of h in (34) result in different ways of updating ex ante CEU into ex

post CEU preferences. That is, for the CEU framework there exist several perceivable

ways of defining a conditional capacity κ (· | I) such that

f �I g ⇔ EC [u (f) , κ (· | I)] ≥ EC [u (g) , κ (· | I)] . (35)

For example, Gilboa and Schmeidler (1993) consider the benchmark cases of the op-

timistic and pessimistic update rules where h corresponds to the constant act giving

the worst, respectively best, possible consequence. The corresponding definitions of

conditional capacities are

κ (A | I) =
κ (A ∩ I)

κ (I)
. (36)

for the optimistic and

κ (A | I) =
κ (A ∪ ¬I)− κ (¬I)

1− κ (¬I)
. (37)
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for the pessimistic update rule.

In the present paper I restrict attention to the popular Generalized Bayesian update

rule

κ (A | I) =
κ (A ∩ I)

κ (A ∩ I) + 1− κ (A ∪ ¬I)
, (38)

which results when h in (34) is given as the conditional certainty equivalent of g on I,

i.e., h is the constant act such that g ∼I h (Eichberger et al. 2006). Compared to (36)
and (37), (38) is less extreme and arguably more realistic.1

Proposition 2. An application of the Generalized Bayesian update rule (38) to a neo-
additive capacity (38) results in the following conditional neo-additive capacity

ν (A | I) = δI · λ+ (1− δI) · µ (A | I) , (39)

for essential A, I ∈ F , whereby

δI =
δ

δ + (1− δ) · µ (I)
. (40)

Proof. Observe that

ν (A | I) =
δ · λ+ (1− δ) · µ (A ∩ I)

δ · λ+ (1− δ) · µ (A ∩ I) + 1− (δ · λ+ (1− δ) · µ (A ∪ ¬I))
(41)

=
δ · λ

δ + (1− δ) · µ (I)
+

(1− δ) · µ (I)

δ + (1− δ) · µ (I)
µ (A | I) (42)

= δI · λ+ (1− δI) · µ (A | I) (43)

with δI given by (40).�

3 Solving the CEU Maximization Problem

Fix some information I ∈ F and consider the conditional neo-additive capacity space

(ν (· | I) ,Ω,F) such that ν (· | I) is given by (39). By Proposition 1, we have

EC
[
u (fx) , ν

(
θ̃ | I

)]
(44)

= δI

(
λ sup
x∈(0,1)

u (fx) + (1− λ) inf
x∈(0,1)

u (fx)

)
+ (1− δI)E

[
u (fx) , µ

(
θ̃ | I

)]
.

1Cohen at al. (2000) investigate in an experiment the question whether the pessimistic update rule

or the Generalized Bayesian update rule is consistent with ambiguity averse subjects’choice behavior.

Their experimental findings establish an approximate ratio of 2:1 in favor for the Generalized Bayesian

update rule.
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Under the assumption of a quadratic vNM utility function (3), we obtain

supu (fx) = 0 (45)

as well as

inf u (fx) =

{
−x2 if x ≥ 1

2

− (1− x)2 if x ≤ 1
2

(46)

Collecting terms gives us the following characterization of the agent’s CEU function

(44).

Proposition 3. The agent’s objective function

EC

[
−
(
x− θ̃

)2

, ν
(
θ̃ | I

)]
(47)

satisfies

EC

[
−
(
x− θ̃

)2

, ν
(
θ̃ | I

)]
= δI (1− λ) (1− x)2 + (1− δI)E

[
−
(
x− θ̃

)2

, µ
(
θ̃ | I

)]
(48)

if x ∈
(
0, 1

2

]
, and

EC

[
−
(
x− θ̃

)2

, ν
(
θ̃ | I

)]
= δI (1− λ)x2 + (1− δI)E

[
−
(
x− θ̃

)2

, µ
(
θ̃ | I

)]
(49)

if x ∈
[

1
2
, 1
)
; with δI given by (40).

To exclude the trivial case where (48) and (49) are constantly zero, I henceforth

assume that

either δI < 1 or δI = 1, λ < 1. (50)

Theorem 1. Let

x1 ≡
δI − δIλ+ (1− δI)E

[
θ̃, µ

(
θ̃ | I

)]
δI − δIλ+ 1− δI

, (51)

x2 ≡
(1− δI)

(1− δIλ)
E
[
θ̃, µ

(
θ̃ | I

)]
. (52)
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The analytical solution

xCI = arg sup
x∈(0,1)

EC

[
−
(
x− θ̃

)2

, ν
(
θ̃ | I

)]
(53)

is comprehensively described as follows.

(a) If

x1 <
1

2
and x2 >

1

2
(54)

then

xCI = arg max
{x1,x2}

EC

[
−
(
x− θ̃

)2

, ν
(
θ̃ | I

)]
. (55)

(b) If

x1 ≤
1

2
and x2 ≤

1

2
(56)

then

xCI = x1. (57)

(c) If

x1 ≥
1

2
and x2 ≥

1

2
(58)

then

xCI = x2. (59)

(d) If

x1 ≥
1

2
and x2 ≤

1

2
(60)

then

xCI =
1

2
. (61)

Proof. Step 1. Observe at first that

E

[
−
(
x− θ̃

)2

, µ
(
θ̃ | I

)]
(62)

is locally uniformly integrably bounded because µ
(
θ̃ | I

)
is finite and −

(
x− θ̃

)2

is

continuous in x and measurable in θ̃ as well as bounded. Similarly, the continuous and

θ̃-measurable partial derivative function

d

(
−
(
x− θ̃

)2
)

dx
(63)
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is locally uniformly integrably bounded with respect to µ
(
θ̃ | I

)
. As a consequence (cf.

Theorem 16.8 in Billingsley 1995), (62) is continuously differentiable in x whereby

dE

[
−
(
x− θ̃

)2

, µ
(
θ̃ | I

)]
dx

= E

d
(
−
(
x− θ̃

)2
)

dx
, µ
(
θ̃ | I

) . (64)

Step 2. Focus on the function (48) and observe that it is, by assumption (50), strictly

concave. Furthermore, (48) is, by (64), continuously differentiable with

d

(
δI (1− λ) (1− x)2 + (1− δI)E

[
−
(
x− θ̃

)2

, µ
(
θ̃ | I

)])
dx

(65)

=
d
(
δI (1− λ) (1− x)2)

dx
+ (1− δI)E

d
(
−
(
x− θ̃

)2
)

dx
, µ
(
θ̃ | I

) (66)

= δI (1− λ) · 2 (1− x) + (1− δI)
∫
ω∈Ω

− (2x− 2θ) dµ
(
θ̃ | I

)
. (67)

At x = 0 (67) is, by assumption (50), strictly greater zero implying

0 6= arg sup
x∈(0,1)

EC

[
−
(
x− θ̃

)2

, ν
(
θ̃ | I

)]
. (68)

Consequently, there exists a maximum x1 of function (48) on the interval
(
0, 1

2

]
which

is either x1 ≥ 1
2
characterized by the FOC or given as the boundary solution x1 = 1

2
.

From the FOC we obtain

δI (1− λ) · 2 (1− x1) + (1− δI)
∫
ω∈Ω

− (2x1 − 2θ) dµ
(
θ̃ | I

)
= 0 (69)

⇔
δI − δIλ

(δI − δIλ+ 1− δI)
+

(1− δI)
(δI − δIλ+ 1− δI)

E
[
θ̃, µ

(
θ̃ | I

)]
= x1. (70)

That is, whenever x1 ∈
(
0, 1

2

]
it is a local maximizer of the objective function (47).

Step 3. Turn now to the function (49), which is also strictly concave. (49) is contin-
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uously differentiable with

d

(
δI (1− λ)x2 + (1− δI)E

[
−
(
x− θ̃

)2

, µ
(
θ̃ | I

)])
dx

(71)

=
d (δI (1− λ)x2)

dx
+ (1− δI)E

d
(
−
(
x− θ̃

)2
)

dx
, µ
(
θ̃ | I

) (72)

= −2δI (1− λ) · x+ (1− δI)
∫
ω∈Ω

− (2x− 2θ) dµ
(
θ̃ | I

)
. (73)

Because (73) is strictly decreasing at x = 1, we have

1 6= arg sup
x∈(0,1)

EC

[
−
(
x− θ̃

)2

, ν
(
θ̃ | I

)]
. (74)

Notice that there exists a maximum x2 of function (49) on the interval
[

1
2
, 1
)
which

is either x2 ≥ 1
2
characterized by the FOC or given as the boundary solution x2 = 1

2
.

Solving the FOC gives

−2δI (1− λ) · x2 + (1− δI)
∫
ω∈Ω

− (2x2 − 2θ) dµ
(
θ̃ | I

)
= 0 (75)

⇔
(1− δI)

(1− δIλ)
E
[
θ̃, µ

(
θ̃ | I

)]
= x2, (76)

implying that x2 is a local maximizer of (47) iff x2 ∈
[

1
2
, 1
)
.

Step 4. If condition (54) holds, we have thus two local maximizers, x1 and x2, of

(47), characterized by FOCs (70) and (76) respectively, and whichever is greater is the

global maximizer for (47). This proves (a).

Step 5. If condition (56) holds, we have one local maximizer x1 characterized by the

FOC (70). Since x1 ≥ 1
2
, with 1

2
being the boundary maximum of (47) on the interval[

1
2
, 1
)
, x1 is also the global maximizer for (47). This proves (b).

Step 6. If condition (58) holds, we have one local maximizer x2 ≥ 1
2
characterized

by the FOC (76) , which is also the global maximizer for (47). This proves (c).

Step 7. If condition (60) holds, there is no local maximizer characterized by any

FOC. Instead (47) takes on its maximum at the kink x = 1
2
. This proves (d).�

The following corollary establishes that the classical point estimate of Bayesian

statistics– given as the expected parameter value with respect to a subjective posterior
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(additive) probability distribution– is nested in the solution of Theorem 1 whenever the

neo-additive capacity reduces to an additive probability measure.

Corollary.

(a) If δ = 0, the analytical solution (53) becomes

xCI = E
[
θ̃, µ

(
θ̃ | I

)]
. (77)

(b) Consider the generic case E
[
θ̃, µ

(
θ̃ | I

)]
6= 1

2
. Only if δ = 0, the analytical

solution (53) becomes (77).

Proof. Case (a) is trivial: If δ = 0, then

EC

[
−
(
x− θ̃

)2

, ν
(
θ̃ | I

)]
= E

[
−
(
x− θ̃

)2

, µ
(
θ̃ | I

)]
(78)

for which (77) is the global maximizer.

Ad case (b). Suppose, on the contrary, that

xCI = E
[
θ̃, µ

(
θ̃ | I

)]
6= 1

2
. (79)

In that case, either xCI = x1 or xCI = x2 because xCI must coincide with some local

maximizer characterized by the corresponding FOC. However, if δ > 0, then

E

[
−
(
x− θ̃

)2

, µ
(
θ̃ | I

)]
6= x1 and E

[
−
(
x− θ̃

)2

, µ
(
θ̃ | I

)]
6= x2, (80)

by (50), implying

xCI 6= E
[
θ̃, µ

(
θ̃ | I

)]
. (81)

�

4 Bayesian Learning of Probability Judgements

Consider some measurable space (Ω′,A) and fix an arbitrary essential A ∈ A. The
agent’s probability judgement will refer to the occurrence of event A. To describe a

standard framework of Bayesian learning of such probability judgements let us impose

the following structure on the information space:

I = ×∞k=1Sk (82)
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such that, for all k,

Sk = {A,¬A} . (83)

Sk collects the possible outcomes of the k-th statistical trial according to which either

A or the complement of A occurs. Denote by σ (Sk) the σ-algebra generated by the

powersets of S1,...,Sk and define the following σ-algebra

Fk = {Θ× S | S ∈ σ (Sk)} . (84)

Observe that (84) constitutes a filtration, i.e., F1 ⊂ F2 ⊂ .... ⊂ F where F is generated
by F1,F2, .... Any event

In = Θ× {s1} × ...× {sn} × Sn+1 × ... ∈ F (85)

with sj ∈ Sj, j = 1, ..., n, is interpreted as possible sample information that the agent

may have observed after the n-th statistical trial.

Consider now the additive probability space (µ,Ω,F) with Ω defined in (1) and F
defined above. Further suppose that the trials are, conditional on θ̃ (ω), i.i.d. such that

A occurs in every trial with true probability θ̃ (ω). That is,

µ
(
In | θ̃

)
=

n∏
j=1

πθ̃ (sj) (86)

such that

πθ̃ (sj) =

{
θ̃ if sj = A

1− θ̃ if sj = ¬A
(87)

By Bayes’ rule, we obtain the posterior µ
(
θ̃ | In

)
such that, for any Borel set B in

Θ = (0, 1),

µ (B | In) =

∫
θ∈B µ

(
In | θ̃

)
dµ
(
θ̃
)

µ (In)
(88)

=

∫
θ∈B

n∏
j=1

πθ̃ (sj) dµ
(
θ̃
)

∫
θ∈(0,1)

n∏
j=1

πθ̃ (sj) dµ
(
θ̃
) . (89)

Recall that Doob’s (1949) consistency theorem2 implies that, for almost all true para-

meter values θ̃ (ω) belonging to the support of µ, the posterior distribution µ
(
θ̃ | In

)
2For a comprehensive discussion of Doob’s theorem see Gosh and Ramamoorthi (2003) and Lijoi et

al. (2004).

15



concentrates with µ-probability one around the true value θ̃ (ω) as n gets large, i.e.,

µ
(
θ̃ | In

)
→ 1B θ̃ (ω) , µ-a.s. (90)

for any Borel set B in Θ = (0, 1) where 1B denotes the indicator function of B. Applied

to the additive Bayesian estimate of the sophisticated agent (77), Doob’s theorem gives

us immediately the following convergence result.

Proposition 4. Let µ
(
θ̃
)
have full support on (0, 1). For the non-generic case δ = 0,

the agent’s probability judgement about any essential event A ∈ A will almost

surely converge to A’s true probability if the sample size n gets large, i.e.,

xCIn ≡ E
[
θ̃, µ

(
θ̃ | In

)]
→ θ̃ (ω) , µ-a.s. (91)

Since Proposition 4 holds for any event in A, the probability judgements about all
events inA will converge through Bayesian learning towards an additive probability mea-
sure on the space (Ω′,A) that resembles an “objective”probability measure. Whenever

(91) holds, I speak of a (statistically) sophisticated agent.

The situation is different for the generic case of a non-additive capacity: Theorem

2 states this paper’s main result according to which the generic agent converges to a

(statistically) ignorant agent whose probability judgement is given as a fuzzy probability

measure that attaches probability 0.5 to any uncertain event in A.

Theorem 2. For any δ ∈ (0, 1] and λ ∈ [0, 1), the agent’s probability judgement about

any essential event A ∈ A will converge, for all ω ∈ Ω, to 0.5 if the sample size n

gets large, i.e.,

xCIn ≡ arg sup
(0,1)

EC

[
−
(
x− θ̃

)2

, ν
(
θ̃ | In

)]
→ 1

2
, Ω-everywhere. (92)

Proof. Step 1. Let
θmax = max {θ, 1− θ} (93)

and observe that, for any I1 with s1 ∈ {A,¬A},

µ (I1) =

∫
(0,1)

πθ̃ (s1) dµ
(
θ̃
)

(94)

≤
∫

(0,1)

θmaxdµ
(
θ̃
)

(95)

=

∫
(0, 1

2)
(1− θ) dµ

(
θ̃
)

+

∫
[ 12 ,1)

θdµ
(
θ̃
)
≡ c < 1. (96)
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Further observe that, for all In,

µ (In) ≤ cn, (97)

implying

lim
n→∞

µ (In) = 0. (98)

Step 2. Notice that (98) together with (40) implies

lim
n→∞

δIn → 1 (99)

for any In.

Step 3. Consider

x1,In ≡
δIn − δInλ+ (1− δIn)E

[
θ̃, µ

(
θ̃ | In

)]
δIn − δInλ+ 1− δIn

. (100)

Because of

0 < E
[
θ̃, µ

(
θ̃ | In

)]
< 1 (101)

for all ω ∈ Ω, we have

x1,In ≤ x1,In ≤ x1,In (102)

for all ω ∈ Ω and all n, whereby

x1,In ≡
δIn − δInλ

δIn − δInλ+ 1− δIn
, (103)

x1,In ≡
δIn − δInλ+ (1− δIn)

δIn − δInλ+ 1− δIn
. (104)

By (99), we have

lim
n→∞

x1,In =
1− λ

1− λ+ 1− 1
, Ω-everywhere (105)

= 1 for all λ < 1, (106)

as well as

lim
n→∞

x1,In =
1− λ+ 1− 1

1− λ+ 1− 1
, Ω-everywhere (107)

= 1 for all λ < 1. (108)

Consequently,

x1,I∞ ≡ lim
n→∞

x1,In = 1, Ω-everywhere for all λ < 1. (109)

Step 4. Turn to

x2,In ≡
(1− δIn)

(1− δInλ)
E
[
θ̃, µ

(
θ̃ | In

)]
(110)
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and observe that, for all ω ∈ Ω and all n,

x2,In ≤ x2,In ≤ x2,In (111)

with

x2,In ≡ 0, (112)

x2,In ≡
(1− δIn)

(1− δInλ)
. (113)

Because of

lim
n→∞

x2,In =
0

1− λ , Ω-everywhere (114)

= 0 for all λ < 1, (115)

we have

x2,I∞ ≡ lim
n→∞

x2,In = 0, Ω-everywhere for all λ < 1. (116)

Step 5. Collecting results establishes

x1,I∞ >
1

2
and x2,I∞ <

1

2
, Ω-everywhere (117)

so that part (d) of Theorem 1 implies the desired result (92).�

5 Concluding Remarks

Referring to the “new psychological concept”of cognitive likelihood insensitivity, Peter

Wakker (2010) demands that “new mathematical tools have to be developed to analyze

this phenomenon”(p. 227). The present paper has done exactly that: Based on technical

tools from fuzzy measure theory, the agent’s probability judgements have been formally

described as the solution to a CEU maximization problem subject to Bayesian learning

of neo-additive capacities. The conceptual main result establishes that all probability

judgements converge to “fifty-fifty”answers whenever the agent’s neo-additive capacity is

not given as an additive probability measure. This generic convergence result might thus

contribute towards an explanation of why “fifty-fifty”judgements are the predominant

empirical phenomenon of likelihood insensitivity.
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