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Abstract

We combine new developments in decision theory with a standard consumption-

based asset-pricing framework. In our model the effi cient market hypothesis is violated

if and only if agents’beliefs express ambiguity about the stochastic process driving

economic fundamentals. Asset price fluctuations result because agents with ambigu-

ous beliefs are prone to a confirmatory bias in the interpretation of new information.

We demonstrate that our approach gives rise to price-patterns of “underreaction”and

“overreaction”to news about dividend payments. Although these empirical phenom-

ena have received significant attention in the behavioral finance literature, we argue

that our decision-theoretic underpinning of psychological attitudes has a less ad hoc

flavor than existing approaches.
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1 Introduction

1.1 Motivation

As a consequence of the recent financial markets crisis and the bubbles in housing and

stock markets that preceded it, there exists renewed interest in understanding better the

forces that are behind such drastic movements of asset prices. Several empirical price

patterns suggest that asset price dynamics cannot be satisfactorily explained by rational

expectations models alone. According to such models asset prices are derived from the

portfolio optimization problems of agents who fully understand stochastic processes that

drive economic fundamentals. The common theme of rational expectation models is the

efficient market hypothesis (=EMH) which implies that price fluctuations should only reflect

payoff-relevant changes in agents’ information about economic fundamentals.

The present paper deviates from this common theme. We develop a decision theoretic

model which gives rise to “underreaction” and “overreaction” of asset prices to dividend

news. These pricing phenomena stand for persistent empirical violations of the EMH.1

Consider the process of equilibrium returns for a given asset (Rt)t≥0 such that

Rt+1 =
p∗t+1 + Yt+1

p∗t
for all t ≥ 1 (1)

whereby (p∗t )t≥0 denotes the ex-dividend equilibrium price process and (Yt)t≥0 denotes the

dividend process. LetGt, respectivelyBt, denote the event that there is “good”, respectively

“bad”, news in period t. Furthermore, we denote by π the probability measure that governs

the “true” stochastic processes of economic fundamentals. We formally define underreaction

and overreaction as follows.

• Underreaction to a sequence of k + 1 good news:

E [Rt+1, π (ω | Bt−k−1, Gt−k, ..., Gt)] > E [Rt+1, π (ω | Gt−k−1, Bt−k, ..., Bt)] . (2)

• Overreaction to a sequence of k + 1 good news:

E [Rt+1, π (ω | Bt−k−1, Gt−k, ..., Gt)] < E [Rt+1, π (ω | Gt−k−1, Bt−k, ..., Bt)] . (3)

1For empirical evidence on underreaction see, e.g., Bernard and Thomas (1990), Cutler et al. (1991),

Bernard (1992), Jegadeesh and Titman (1993), Rouwenhorst (1997), Chan et al. (1997) and Chan (2003).

For empirical evidence on overreaction compare, e.g., De Bondt and Thaler (1985), Zarowin (1989), Chopra

et al. (1992), La Porta (1996), La Porta et al. (1997), and Antweiler and Frank (2006).
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Barberis, Shleifer and Vishny (1998) argue that the typical empirical phenomenon is

underreaction to a single period, i.e., k = 0, and overreaction to a sequence, i.e., k ≥ 1,

of good news. Following Barberis et al. (1998), we are therefore especially interested in

identifying conditions such that the following return pattern emerges from our asset pricing

model.

• Underreaction to a single period of good news:

E [Rt+1, π (ω | Bt−1, Gt)] > E [Rt+1, π (ω | Gt−1, Bt)] . (4)

• Overreaction to multiple periods of good news: For all k ≥ 1,

E [Rt+1, π (ω | Bt−k−1, Gt−k, ..., Gt)] < E [Rt+1, π (ω | Gt−k−1, Bt−k, ..., Bt)] . (5)

The interpretation of the empirical phenomena (4) and (5) is straightforward. For a

single period of good news, the present period’s asset price does not incorporate the good

news sufficiently, i.e., p∗t tends to underreact to good news that come as a surprise. Conse-

quently, the average future return is greater for a positive than for a negative surprise. For

multiple periods of good news the opposite effect happens: now the present period’s asset

price tends to overreact to a sequence of good news, i.e., to good news that are no longer

surprising. Without, arguably, unrealistic non-stationarity assumptions about the objective

dividend process, the EMH cannot explain (4) and (5). To see this consider the interesting

benchmark case according to which today’s news and future economic fundamentals (=div-

idends) are independent and identically distributed. Under this i.i.d. assumption, the EMH

implies that the lhs and rhs in (2), as well as in (3), must hold with equality for any number

k. As a consequence, rational expectation models of asset pricing—which assume that the

objective probability measure π coincides with the economic agents’ subjective beliefs—are

unable to generate the return patterns (4) and (5) for this i.i.d. benchmark case. In con-

trast, our behavioral model of asset price fluctuations will be able to generate the return

patterns (4) and (5) even if π gives rise to i.i.d. dividend payments.

We formalize the subjective beliefs of a representative economic agent within the ax-

iomatic framework of Choquet expected utility (CEU) theory (Schmeidler 1986, 1989;

Gilboa 1987). In contrast to standard expected utility (EU) theory, beliefs of a CEU agent
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are described by non-additive rather than additive probability measures. These accommo-

date violations of Savage’s (1954) sure thing principle as demonstrated by Ellsberg (1961)

paradoxes. Ellsberg paradoxes have been elicited for preferences over Savage acts. These

assign to every state of the world some deterministic consequence, e.g., some infinite stream

of monetary payoffs. The choice between Savage acts can be interpreted as an investment

choice between different asset-portfolios. Any model of preferences under uncertainty that

incorporates Ellsberg-type behavior is therefore relevant for real-life investment decisions

on financial markets.2

To simplify our analysis we further restrict attention to neo-additive capacities in the

sense of Chateauneuf, Eichberger and Grant (2007). Accordingly, an agent’s non-additive

belief about the likelihood of an event is a weighted average of an ambiguous part and an

additive part, i.e., some subjective additive probability measure. In a next step we use

our decision-theoretic model to formalize our central behavioral assumption. It states that

agent’s belief generation process is governed by a confirmatory bias heuristic: the interpre-

tation of new information depends on the asset’s past performance in terms of dividend

payments. Our formal concept of a confirmatory bias heuristic exploits the fact that there

exist several perceivable Bayesian update rules for non-additive probability measures. These

reflect different psychological attitudes towards the interpretation of new information.3 We

consider the optimistic and pessimistic (Gilboa and Schmeidler 1993; Sarin and Wakker

1998a) as well as the full Bayesian update rule (Pires 2002; Eichberger, Grant, and Kelsey

2006; Siniscalchi 2011). Depending on the agent’s information about the asset’s past per-

formance in terms of dividend payments, three corresponding asset pricing regimes emerge

whereby frequency of change between asset pricing regimes is governed by a switching pa-

rameter with value n ≥ 1. Our formal approach thus captures the intuitive notion that good

news result in an optimistic whereas bad news result in a pessimistic bias in the agent’s

belief about the asset’s future prospects. Whenever neo-additive beliefs of our approach

reduce to additive probability measures, these three different pricing regimes collapse into

the familiar asset pricing model of expected utility theory with additively time-separable

preferences. However, when neo-additive beliefs of our model express ambiguity attitudes,

the existence of three different pricing regimes results in a higher fluctuation of equilibrium

prices than for standard expected utility.

2Also note that Wu and Gonzalez (1999) report Ellsberg-type behavior (more specifically: inversely

S-shaped decision weighting functions) for bets on the future value of the Dow Jones Industrial Average.
3As explained in Section 2, this “indeterminacy” of update rules is a direct consequence of the violation

of Savage’s (1954) sure thing principle as elicited in paradoxes of the Ellsberg (1961) type.
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As our paper’s main formal contribution we characterize conditions for which our model

generates asset-return patterns (2) and (3), respectively. In particular, we pin down n = 2

as the unique value of the switching parameter that simultaneously generates the empirical

phenomena (4) and (5) within our model.

1.2 Our modeling choice: Dynamic inconsistency combined with

sequential näıvety

The decision-theoretic principles of consequentialism, dynamic consistency, and universal-

ism give rise to standard EU theory whenever dynamic decision situations are reduced to a

static Savage framework. In this framework ex ante and ex post preferences are defined over

Savage acts (Sarin and Wakker 1998b; Ghirardato 2002). Loosely speaking4, consequential-

ism states that an agent’s preferences over future consequences should not be affected by

the way he arrived at a decision situation; dynamic consistency states that there should be

no conflict of interest between the agent and his future selves; and universalism states that

behavioral axioms have to apply to all—and not only to conveniently selected—events.

Starting with the seminal contribution of Epstein and Wang (1994) existing models

of intertemporal asset pricing under ambiguity are typically formalized within the (conse-

quentialist) rectangular multiple priors framework (Sarin and Wakker 1998b, Epstein and

Schneider 2003). The rectangular multiple priors approach adds dynamic consistency as an

axiom to a multi-period version of the Gilboa and Schmeidler (1989) multiple priors frame-

work.5 To this end, it has to give up universalism in order to avoid reduction to standard

EU theory. Dynamic consistency is ensured by fixing an information filtration such that

any violation of Savage’s sure thing principle can only happen at events that may never be

observed by the decision maker. By construction, the rectangular multiple priors approach

thereby comes at the cost of excluding any dynamic version of Ellsberg paradoxes. As a

consequence, only a rather restrictive notion of ambiguity attitudes remains admissible (cf.

4In Section 2 we give precise definitions of these principles and derive their formal relationship to Savage’s

sure thing principle which is at the heart of (subjective) EU theory.
5Observe that an CEU decision maker of our model who resolves his ambiguity exclusively in a pessimistic

way (i.e., via a convex neo-additive capacity) could be equivalently described within Gilboa and Schmeidler’s

(1989) multiple priors framework if the priors are given as the core of this neo-additive capacity. However,

in contrast to the original Gilboa and Schmeidler (1989) multiple priors framework—which can only express

ambiguity aversion—our approach is in line with empirical evidence that suggests a mix between ambiguity

proneness and ambiguity aversion (cf. the inversely S-shaped weighting functions as described by Wu and

Gonzales (1996, 1999) and by Wakker (2004)).
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Ghirardato 2002; Hansen, Sargent, Turmuhambetova, and Williams 2006; Siniscalchi 2011;

and Section 2.2. of this paper).

In contrast, the (consequentialist) decision-theoretic framework of our paper satisfies

universalism. The representative agent of our model expresses ambiguity attitudes if and

only if his decision behavior is dynamically inconsistent. As one major difference to the

rectangular multiple priors approach, our decision-theoretic model may thus express am-

biguity attitudes which are independent of any fixed information partition. In particular,

violations of the sure thing principle may also occur at observable events. As another major

difference, our confirmatory bias heuristic is formalized in terms of three different Bayesian

update rules. In contrast, the rectangular multiple priors approach is based on a unique

(measure-by-measure) Bayesian update rule. Unless the rectangular multiple priors frame-

work could be extended to a version that admits for different Bayesian updates rules, our

approach of modeling under- respectively overreaction through an application of different

psychologically motivated Bayesian update rules is not possible within this dynamically

consistent framework.

For dynamically inconsistent agents there exist two alternative ways to characterize

equilibrium conditions. One alternative is to consider agents who are sequentially rational

(i.e., sophisticated) in the sense that they fully understand their dynamically inconsistent

decision behavior so that an ex ante agent correctly anticipates his future selves’ decisions.

An according model of intertemporal asset pricing with dynamically inconsistent but se-

quentially rational CEU agents is described in Zimper (2012). He combines the notion of

subgame-perfectness with the standard general equilibrium approach to take account of

conflict of interest between an ex ante agent and his future selves.

In this paper we have chosen the alternative approach where sequentially näıve agents

are not aware of their dynamically inconsistent decision behavior. Sequentially näıve agents

of our model solve their intertemporal decision problem—in terms of an infinite contingent

plan of actions—without realizing that their future selves might have a strict incentive

to deviate from an ex ante optimal plan of actions. The resulting first order condition

determining the current period’s equilibrium price is thereby formally equivalent to a two

period maximization problem according to which myopic agents only think one period

ahead. The asset pricing equilibrium of our model—with sequentially näıve agents who

care about infinite consumption streams—could therefore be interpreted as the equilibrium

of an economy consisting of an infinite sequence of myopic agents. Empirical evidence

favoring asset pricing models with myopic agents is provided, e.g., by Bernartzi and Thaler
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(1995), Thaler, Tversky, Kahneman, and Schwartz (1997) as well as LeBaron (2000, 2006).6

This supports our modeling choice.

The remainder of our analysis is structured as follows. Section 2 describes the decision-

theoretic foundations of our model. We emphasize conceptional differences between our

approach and the rectangular multiple priors model of Epstein and Schneider (2003). Based

on these decision-theoretic preliminaries, Section 3 formalizes our behavioral assumptions:

agents are (i) prone to a confirmatory bias and (ii) näıve in the sense that they are ignorant

with respect to this bias. Section 4 merges our assumptions on expectations and behavior

with a standard Lucas (1978) type asset pricing model. Section 5 revisits the formal defini-

tions of under- and overreaction and derives conditions under which our asset-pricing model

generates these return patterns. In Section 6 we illustrate—by use of a simple numerical

example—the equilibrium return patterns. In Section 7 we discuss merits and shortcomings

of our approach relative to the existing literature on under- and overpricing. Finally, Section

8 concludes. The formal proof of our proposition is relegated to a separate appendix.

2 Decision-theoretic preliminaries

The formalism of our behavioral model is based on Choquet decision theory. In the first

subsection we recall basic elements of Choquet expected utility (CEU) theory and we intro-

duce neo-additive capacities as a specific class of non-additive probability measures. In the

second subsection we discuss the relationship between dynamic consistency and Savage’s

sure thing principle. The analysis follows closely Zimper (2011, 2012). The final subsection

presents different Bayesian update rules for non-additive probability measures.

2.1 Choquet decision theory and neo-additive capacities

CEU theory was first axiomatized by Schmeidler (1986, 1989) within the Anscombe and

Aumann (1963) framework, which assumes preferences over objective probability distribu-

tions. Subsequently, Gilboa (1987) has presented an CEU axiomatization within the Savage

(1954) framework, assuming a purely subjective notion of likelihood. When restricted to the

domain of gains, CEU theory is formally equivalent to cumulative prospect theory (Tversky

and Kahneman 1992; Wakker and Tversky 1993) which generalizes the celebrated prospect

theory of Kahneman and Tversky (1979). Moreover, as a representation of preferences over

6We are grateful to an anonymous referee who pointed us to this literature.
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lotteries, CEU theory coincides with rank dependent utility theory as introduced by Quig-

gin (1981, 1982). Within the context of CEU theory, properties of such capacities are used

in the literature for formal definitions of ambiguity and uncertainty attitudes (Schmeidler

1989; Epstein 1999; Ghirardato and Marinacci 2002), pessimism and optimism (Eichberger

and Kelsey 1999; Wakker 2001), as well as likelihood insensitivity (Wakker 2004, 2010).

Let us consider a measurable space (Ω,F) with F denoting a σ-algebra on the state

space Ω and a non-additive probability measure (=capacity) ν : F → [0, 1] satisfying

(i) ν (∅) = 0, ν (Ω) = 1

(ii) A ⊂ B ⇒ ν (A) ≤ ν (B) for all A,B ∈ F .

The Choquet integral of an F -measurable function f : Ω → R with respect to capacity

ν is defined as the following Riemann integral extended to domain Ω (Schmeidler 1986):

E [f, ν (dω)] =

∫ 0

−∞
(ν ({ω ∈ Ω | f (ω) ≥ z})− 1) dz+

∫ +∞

0

ν ({ω ∈ Ω | f (ω) ≥ z}) dz (6)

whereby we simply write E [f, ν] for E [f, ν (dω)]. For example, assume that f takes on m

different values such that A1, ..., Am is the unique partition of Ω with f (ω1) > ... > f (ωm)

for ωi ∈ Ai. Then the Choquet expectation (6) becomes

E [f, ν] =
m∑
i=1

f (ωi) · [ν (A1 ∪ ... ∪ Ai)− ν (A1 ∪ ... ∪ Ai−1)] .

Our approach focuses on non-additive probability measures that are defined as neo-

additive capacities in the sense of Chateauneuf, Eichberger and Grant (2007).

Definition. Fix some set of null-events N ⊂ F for the measurable space (Ω,F).7 The

neo-additive capacity, ν, is defined, for some δ, λ ∈ [0, 1] by

ν (A) = δ · νλ (A) + (1− δ) · π (A) (7)

for all A ∈ F such that π is some additive probability measure satisfying

π (A) =

{
0 if A ∈ N
1 if Ω\A ∈ N

7Intuitively speaking, null events are the events that the decision maker deems impossible. For instance,

within a Savage framework we have that A ∈ N if and only if, for all Savage acts f, g, h, h′,

hAf ≽ h′
Ag ⇔ f ≽ g,

i.e., consequences on A are irrelevant to the decision maker; (see Subsection 2.2. for the notation).
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and the non-additive probability measure νλ is defined as follows

νλ (A) =


0 iff A ∈ N
λ else

1 iff Ω\A ∈ N .

Throughout this paper, we restrict attention to sets of null-events N such that A ∈ N
if and only if π (A) = 0, which implies ν (A) = 0 (resp. ν (A) = 1) if and only if π (A) = 0

(resp. π (A) = 1). For any essential events, i.e., A /∈ N and Ω\A /∈ N , the neo-additive

capacity ν in (7) then simplifies to

ν (A) = δ · λ+ (1− δ) · π (A) (8)

with 0 < π (A) < 1. Neo-additive capacities can thus be interpreted as non-additive

beliefs that stand in for deviations from additive beliefs such that a parameter δ (degree

of ambiguity) measures the lack of confidence the decision maker has in some subjective

additive probability distribution π.

The following observation extends a result (Lemma 3.1) of Chateauneuf, Eichberger and

Grant (2007) for finite random variables to the more general case of random variables with

a compact range (for a formal proof see Zimper 2012).

Observation 1. Let f : Ω → R be an F-measurable function with compact range. The

Choquet expected value (6) of f with respect to a neo-additive capacity (7) is then

given by

E [f, ν] = δ

(
λmax

ω∈Ω
f (ω) + (1− λ)min

ω∈Ω
f (ω)

)
+ (1− δ)E [f, π] . (9)

According to Observation 1, the Choquet expected value of a random variable f with

respect to a neo-additive capacity is a convex combination of the expected value of f

with respect to some additive probability measure π and an ambiguity part. If there is no

ambiguity, i.e., δ = 0, then the Choquet expected value (9) reduces to the standard expected

value of a random variable with respect to an additive probability measure. In case there is

some ambiguity, however, the second parameter λ measures how much weight the decision

maker puts on the best possible outcome of f when resolving his ambiguity. Conversely,

(1− λ) is the weight he puts on the worst possible outcome of f . As a consequence, we
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interpret λ as a (relative) “optimism under ambiguity” parameter whereby λ = 1, resp.

λ = 0, corresponds to extreme optimism, resp. extreme pessimism.

Remark. In addition to the above “motivational”interpretation in terms of ambigu-

ity attitudes, there exists a “cognitive” interpretation of neo-additive beliefs in terms of

“likelihood insensitivity” (Wakker 2004, 2010). Likelihood insensitivity is a persistent ex-

perimental phenomenon which “reflects diminishing sensitivity for a scale bounded from two

sides” (Wakker 2010, p. 227). Accordingly, the decision maker does not sufficiently distin-

guish between probabilities that lie between zero and one (for example, any uncertainty is

resolved in a fifty-fifty way).

2.2 Sure thing principle, consequentialism, and dynamic consis-

tency

Under the standard Bayesian assumption, dynamic decision situations can equivalently be

described within a static Savage framework in which ex ante and ex post preferences are

defined over Savage acts. The sure thing principle, defined for ex ante preferences, then

bears implications on principles of dynamic decision making (e.g., dynamic consistency)

which link ex ante with ex post preferences. This subsection analyzes the relationship

between the sure thing principle and dynamic consistency. We conclude this subsection

with a discussion of the rectangular multiple priors approach.

Consider again the state space Ω with σ-algebra F which contains all events that are

relevant to the decision maker in the sense that he attaches probabilities to these events. For

example, we might simply follow Savage (1954) and assume that F is given as the power-set

2Ω. Recall that a Savage act f is an F -measurable function that maps the state space Ω

into an arbitrary set of consequences X, i.e., f : Ω → X. Event space F is supposed to be

rich enough to cover all aspects of uncertainty relevant to the decision maker. Whenever

ω ∈ Ω is the (unique) true state of the world and the agent has chosen Savage act f , he

ends up with consequence f (ω) after uncertainty is resolved. Given two Savage acts f, g,

let B,¬B ∈ F denote two complementary events and define Savage act fBg : Ω → X as

follows:

fBg (ω) =

{
f (ω) for ω ∈ B

g (ω) for ω ∈ ¬B.
(10)

Ex ante preferences over Savage acts, denoted ≽, are interpreted as the decision maker’s

preferences before he receives any information.
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Fix now some partition Π of Ω whereby σ (Π) ⊆ F denotes the σ-algebra generated by

Π.

Definition: σ (Π)-sure thing principle. For all Savage acts f, g, h, h′ and all events

B ∈ σ (Π), the following condition holds for ex ante preferences:

fBh ≽ gBh ⇒ fBh
′ ≽ gBh

′. (11)

Turn now to ex post preferences over Savage acts, denoted ≽B. These are interpreted

as preferences conditional on B, i.e., after the decision maker has observed the occurrence

of some non-null event B ∈ F .

Definition: σ (Π)-consequentialism. For all Savage acts f, g, h, h′, h′′, h′′′ and all non-

null events B ∈ σ (Π), the following condition holds for ex post preferences:

fBh ≽B gBh
′ ⇔ fBh

′′ ≽B gBh
′′′. (12)

The notion of consequentialism in the context of decision trees under risk goes back to

Hammond (1989) and Machina (1989) whereby Burks (1977) already refers to the same

concept as “invariance axiom” (see the formal definition in Burks 1977, p. 268). In words,

(12) states that it should not matter for ex post preferences conditional on observation B

whatever consequences, governed either by h, h′, h′′, or h′′′, might have happened outside of

B.

Definition: σ (Π)-dynamic consistency. For all Savage acts f, g, h and all non-null

events B ∈ σ (Π), the following condition holds for the relationship between ex ante

and ex post preferences:

fBh ≽ gBh ⇔ fBh ≽B gBh. (13)

Observation 2. σ (Π)-consequentialism (12) combined with σ (Π)-dynamic consistency

(13) implies the σ (Π)-sure thing principle (11).
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Proof: Consider any non-null B ∈ σ (Π). Observe that

fBh ≽ gBh

⇒ fBh ≽B gBh by (13)

⇒ fBh
′ ≽B gBh

′ by (12)

⇒ fBh
′ ≽ gBh

′ by (13),

which proves the claim.�

Definition: The universalism principle states that σ (Π) = F .

Combined with Observation 2 the universalism principle implies that Savage’s sure thing

principle holds at all non-null events so that consequentialism, dynamic consistency and uni-

versalism give rise—under the remaining Savage axioms—to standard EU theory.8 Sarin

and Wakker (1998b, Theorem 2.1) give up universalism. They show that updating within

the fixed information structure of a given decision tree satisfies consequentialism and dy-

namic consistency whenever the set of multiple priors is given as the reduced family of

probability measures. This reduced family of probability measures coincides with rectangu-

lar priors in the terminology of Epstein and Schneider (2003) who also fix some information

structure Π and assume that Savage’s sure thing principle holds at all observable events

in σ (Π) only. As one implication of the rectangular multiple priors model, agents with

different ex post information partitions must have different sets of priors, i.e., different ex

ante ambiguity attitudes. As another implication, an agent who might learn in the future

any possible information can not express any ambiguity attitudes under the rectangular

multiple priors approach.

In our opinion, the rectangular MP approach demonstrates that the existence of am-

biguity attitudes can only be reconciled with dynamic consistency under rather restrictive

conditions. Hansen et al. (2006) argue along similar lines:

“If multiple priors truly are a statement of a decision maker’s subjective beliefs,

we think it is not appropriate to dismiss such beliefs on the grounds of dynamic

inconsistency. Repairing that inconsistency through the enlargements necessary

to induce rectangularity reduces the content of the original set of prior beliefs.

In our context, this enlargement is immense, too immense to be interesting to

us.” (p. 78)

8This finding restates an implication of Lemma 2 in Ghirardato (2002) for our slightly different definitions

of consequentialism and dynamic consistency.
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2.3 Bayesian updating of non-additive probability measures

A Bayesian update rule specifies how ex ante preference ordering ≽ determines, for all

non-null B ∈ F , ex post preference ordering ≽B. In what follows we restrict attention to

(B, h)-Bayesian update rules in the sense that there exists for every non-null B ∈ F and

every pair of Savage acts f, g some Savage act h, possibly depending on event B, such that

fBh ≽ gBh implies fBh
′ ≽B gBh

′′ for all h′, h′′. (14)

Such update rules obviously satisfy consequentialism since ex post preferences are indepen-

dent of consequences that happened outside of observation B.9

In case the sure thing principle is satisfied, the specification of h in (14) would not

matter for deriving ex post preferences. In case of CEU preferences, however, different

specifications of h in (14) result in different ways of updating ex ante CEU into ex post

CEU preferences. Hence, several perceivable ways exist for defining a conditional capacity

ν (· | B) such that

f ≽B g ⇔ E [U (f) , ν (· | B)] ≥ E [U (g) , ν (· | B)]

even if we restrict attention to consequentialist Bayesian update rules. For example, Gilboa

and Schmeidler (1993) consider the benchmark cases of optimistic and pessimistic update

rules. In these h corresponds to the constant act giving the worst, respectively best, possible

consequence. Gilboa and Schmeidler (1993) offer the following psychological motivation for

the optimistic update rule:

“[...] when comparing two actions given a certain event B, the decision maker implicitly

assumes that had B not occurred, the worst possible outcome [...] would have resulted.

In other words, the behavior given B [...] exhibits ‘happiness’ that B has occurred;

the decisions are made as if we are always in ‘the best of all possible worlds’.”(p. 41)

Similarly, for the pessimistic update rule:

“[...] we consider a ‘pessimistic’ decision maker, whose choices reveal the hidden assump-

tion that all the impossible worlds are the best conceivable ones.” (p. 41f.)

9For an update rule for non-additive probability measures that violates consequentialism but satisfies

dynamic consistency see Sarin and Wakker (1998a).
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The corresponding formal definitions of conditional capacities are given as

νopt (A | B) =
ν (A ∩B)

ν (B)
. (15)

for the optimistic and

νpess (A | B) =
ν (A ∪ ¬B)− ν (¬B)

1− ν (¬B)
. (16)

for the pessimistic update rule.

We further consider the full (or generalized) Bayesian update rule

νFB (A | B) =
ν (A ∩B)

ν (A ∩B) + 1− ν (A ∪ ¬B)
, (17)

which results when h in (14) is given as the so-called conditional certainty equivalent of g

on B, i.e., h is the constant act such that g ∼B h (Eichberger, Grant, and Kelsey 2006).

Compared to (18) and (19), the full Bayesian update rule is less extreme and it performs

empirically rather well, see, e.g., Cohen, Gilboa, Jaffray, and Schmeidler (2000) as well as

Ludwig and Zimper (2011). A formal proof of the following observation appears in Zimper

and Ludwig (2009).

Observation 3. Bayesian updating of neo-additive capacities.

1. An application of the optimistic update rule (15) to a neo-additive capacity (7)

results in the conditional neo-additive capacity

νopt (A | B) = δopt (B) + (1− δopt (B)) · π (A | B) (18)

with

δopt (B) =
δ · λ

δ · λ+ (1− δ) · π (B)
.

2. An application of the pessimistic update rule (16) to a neo-additive capacity (7)

results in the conditional neo-additive capacity

νpess (A | B) = (1− δpess (B)) · π (A | B) (19)

with

δpess (B) =
δ · (1− λ)

δ · (1− λ) + (1− δ) · π (B)
.
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3. An application of the full Bayesian update rule (17) to a neo-additive capacity

(7) results in the conditional neo-additive capacity

νFB (A | B) = δFB (B) · λ+ (1− δFB (B)) · π (A | B) (20)

with

δFB (B) =
δ

δ + (1− δ) · π (B)
.

3 The behavioral model

Based on Choquet decision theory we develop a behavioral model according to which agents’

belief generation process is prone to a confirmatory bias heuristic whenever the asset’s per-

formance in terms of dividends is regarded as good, respectively bad. This performance-

driven confirmatory bias—formally introduced in Subsection 3.2—implies dynamically in-

consistent behavior. In Subsection 3.3 we formalize our assumption of sequential näıvety

in the sense that agents are not aware of their confirmatory bias.

3.1 Information structure

Let (Yt)t≥0 denote a sequence of random variables. The range of Yt is given by some finite

set Yt ⊂ R+ containing at least two elements. We interpret Yt as the asset’s random period

t dividend payments which we identify—by convention—with the underlying firm’s period

t profits. For our purpose it is convenient to consider Yt as coordinate variable on state

space

Ω = ×∞
t=0Yt,

i.e., for all t ≥ 0, Yt : Ω → Yt such that

Yt (ω) = yt for ω = (y0, y1, ...) .

As period t’s agent information partition we define

Pt =
{
{(y0, ..., yt)} ×

(
×∞

s=t+1Yt

)}
(y0,...,yt)∈×t

s=0Yj
.

Observe that agents’ information partitions get finer with increasing t. This implies that

period t agent can observe any realized stream of past dividend payments y0, ..., yt. Further

denote by Ft the Borel σ-algebra generated by Pt; that is, Ft contains all sets

A×
(
×∞

s=t+1Ys

)
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in Ω such that A is any subset of ×t
s=0Ys. As in standard infinite horizon asset pricing

models we thus assume perfect memory since σ-algebras Ft generated by Pt constitute

a filtration, i.e., F1 ⊆ F2 ⊆ ... ⊆ F whereby F denotes the standard product algebra

generated by F1,F2, ....

3.2 Performance-driven confirmatory bias heuristic

Given a measurable space (Ω,F) we now describe agents’ belief generation process by some

conditional neo-additive probability measure ν (· | ·). Recall that information received by a

period t agent is given as the stream of realizations of past profits y0, ..., yt. Let us formally

define this information as the following event in Ft

It = (y0, ..., yt)×
(
×∞

s=t+1Ys

)
whereby we will henceforth speak of “agent It” whenever a period t agent has received

information It.

Key to our behavioral approach is the heuristic assumption according to which period t

agent might have an optimistic, respectively pessimistic, confirmatory bias in the evaluation

of an asset’s future performance. This results from the agent’s observation of the asset’s

past “performance”. In line with most of the literature, we impose the simplifying—but

plausible—assumption that an agent evaluates the asset’s performance in terms of profits

which coincide with dividend payments. More specifically, we interpret “good news in

period t” as the event of a dividend payment increase, i.e., Gt ≡ (yt−1 < yt), and “bad news

in period t” as a dividend payment decrease, i.e., Bt ≡ (yt−1 > yt). Denote by j = k+1 the

number of good news (i.e., dividend increases), resp. bad news (i.e., dividend decreases),

so that

(Bt−k, Gt−k+1, ..., Gt) ≡ (yt−j−1 > yt−j < ... < yt) ,

(Gt−k, Bt−k+1, ..., Bt) ≡ (yt−j−1 < yt−j > ... > yt) .

The following assumptions on conditional neo-additive probability measure ν (· | ·) nat-
urally link our heuristic concept of “good” versus “bad” asset performance to optimistic

versus pessimistic Bayesian update rules for neo-additive beliefs of Subsection 2.3. The

so-called “switching” parameter, denoted n, thereby determines after how many good, re-

spectively bad, news the agent switches to the optimistic, respectively pessimistic, updating

rule.
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Confirmatory bias heuristic. Fix switching parameter n ≥ 1 and let

It = (y0, ..., yt−n, ..., yt)×
(
×∞

s=t+1Ys

)
∈ F .

Then ν (· | ·) must satisfy the following conditions.

(i) If yt−n < ... < yt, then agent It is optimistically biased in the sense that, for all

A ∈ F ,

ν (A | It) = νopt (A | It)

with νopt (A | It) given by (18).

(ii) If yt−n > ... > yt, then agent It is pessimistically biased in the sense that, for all

A ∈ F ,

ν (A | It) = νpess (A | It)

with νpess (A | It) given by (19).

(iii) If neither yt−n < ... < yt nor yt−n > ... > yt, then, for all A ∈ F ,

ν (A | It) = νFB (A | It)

with νFB (A | It) given by (20).

Thereby, if the period t agent has observed strictly increasing past profits yt−n, ..., yt for

a fixed number n of periods, he interprets the prospect of future profits in an optimistic

way. If, in contrast, he has observed strictly decreasing past profits yt−n, ..., yt, he interprets

the prospect of future profits in a rather pessimistic way.

These heuristic assumptions on ν (· | ·) conclude construction of (ν (· | ·) ,Ω,F) as con-

ditional neo-additive probability space that governs agents’ actual belief generation process

about dividend payments.

3.3 Sequentially näıve agents

While (ν (· | ·) ,Ω,F) describes—by definition—the belief generation process for every agent

It about next period’s profits Yt+1, agents themselves have an incorrect view of this belief

generation process. More precisely, we assume that every agent It is convinced that his and

his future selves’ beliefs are governed by some process
(
νIt (· | ·) ,Ω,F

)
whereby ν (· | Is)

and νIt (· | Is) coincide whenever s = t but not for future periods s > t . That is, our agents
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are “näıve” in the sense that they do not correctly anticipate that their future selves’ beliefs

are governed by ν (· | ·) and not by νIt (· | ·).
In what follows we impose formal properties on νIt (· | ·) whereby we slightly misuse

notation and simply write ys+1 for event

(Ys+1 = ys+1) ∈ Fs+1

and y0, ..., ys for event

(Y0 = y0, ..., Ys = ys) ∈ Fs.

Agent It’s “näıve” belief νIt (· | ·).

(i) Suppose that It is optimistically biased. Then, for all ys+1 ∈ Fs+1 and all

y0, ..., ys ∈ Fs with s ≥ t,

νIt
opt (ys+1 | y0, ..., ys) = δItopt +

(
1− δItopt

)
· π (ys+1 | y0, ..., ys)

whereby

δItopt =
δ · λ

δ · λ+ (1− δ) · π (It)
.

(ii) Suppose that It is pessimistically biased. Then, for all ys+1 ∈ Fs+1 and all

y0, ..., ys ∈ Fs with s ≥ t,

νIt
pess (ys+1 | y0, ..., ys) =

(
1− δItpess

)
· π (ys+1 | y0, ..., ys)

whereby

δItpess =
δ · (1− λ)

δ · (1− λ) + (1− δ) · π (It)
.

(iii) Suppose that It is neither optimistically nor pessimistically biased. Then, for all

ys+1 ∈ Fs+1 and all y0, ..., ys ∈ Fs with s ≥ t,

νIt
FB (ys+1 | y0, ..., ys) = δItFB · λ+

(
1− δItFB

)
· π (ys+1 | y0, ..., ys)

whereby

δItFB =
δ

δ + (1− δ) · π (It)
.
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Whenever there exist ambiguity in our model, i.e., δ ̸= 0, our confirmatory bias heuristic

gives rise to dynamic inconsistency. To see this for, e.g., two optimistically biased agents

It and Is such that s > t observe that

νIt (ys+1 | y0, ..., ys) = δItopt +
(
1− δItopt

)
· π (ys+1 | y0, ..., ys)

̸= δIsopt +
(
1− δIsopt

)
· π (ys+1 | y0, ..., ys)

= νIs (ys+1 | y0, ..., ys) = ν (ys+1 | Is)

since δItopt ̸= δIsopt because of π (It) > π (Is). That is, period t agent It bases his optimal action

in period s—contingent on occurrence of observation y0, ..., ys—on belief νIt (· | y0, ..., ys).
This is different from belief νIs (ys+1 | y0, ..., ys) of period s agent who has actually observed

y0, ..., ys. Hence, a period t agent comes up with a contingent plan of future actions that are

optimal from his period t perspective, i.e., with respect to belief νIt (· | y0, ..., ys). However,
this plan may be sub-optimal from the same agent’s period s > t perspective, i.e., with

respect to belief νIs (ys+1 | y0, ..., ys). As a consequence, there is a conflict of interest between
an agent and his future selves.

By our assumption of sequentially näıve agents, we stipulate that agents are not aware of

this conflict. Our agents are thus not sophisticated in the sense of Strotz (1956) and Pollak

(1968) nor behavioral consistent in the sense of Karni and Safra (1990) nor sequentially

rational in the sense of Kreps and Wilson (1982). Such sequentially rational agents would

correctly anticipate dynamically inconsistent behavior of their future selves and accordingly

incorporate it into their decisions. This is not the case for our agents who wrongly believe

that their future selves will stick to the ex ante optimal plan of actions.

4 The equilibrium price process

In this section we derive corresponding equilibrium prices of our sequentially näıve rep-

resentative agent economy as an adapted stochastic process (p∗t )t≥0 that consists of three

different pricing regimes.

Consider the decision situation of a representative agent It who maximizes his Choquet

expected utility from an infinite consumption stream with respect to his belief νIt (· | ·) by
deciding about his period t, t+ 1, ... asset holdings. In line with most literature we assume

that agent’s vNM utility of an infinite consumption stream is additively time-separable.

Let β ∈ (0, 1) denote the time-discount factor and let u : R → R be a strictly concave,

differentiable per period utility function. Denote by zs ∈ Z, the agent’s asset holdings in
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period s for some open, bounded and convex Z ⊂ R+ with 1 ∈ Z. We set for the initial

asset endowment z0 = 1. Let ps denote the period s asset price. The agent’s maximization

problem is then given as

max
(zt,zt+1,...)

u (ct) + E

[
∞∑

s=t+1

βs−tu (cs) , ν
It (· | ·)

]
subject to

cs = Yszs + ps (zs − zs+1) for all s ≥ t.

In our representative agent economy it must hold for any period t equilibrium allocation

that z∗t = 1. We further assume that Choquet expected utility

E

[
∞∑

s=t+1

βs−tu (cs) , ν
It (· | ·)

]
is finite for all (zt, zt+1, ...). Define for s > t the following random variable (the stochastic

discount factor)

Mt,s = βs−t · u
′ (cs)

u′ (ct)
.

Consider now the special case of an expected utility decision maker where ν degenerates

to the “true” probability measure π. In this degenerate case the period t asset price is given

by the standard formula

pEU
t = E

[
∞∑

s=t+1

Mt,s · Ys, π (ys)

]
. (21)

In contrast to this degenerate case, however, an ambiguous belief ν gives rise to an equilib-

rium price process (p∗t )t≥0 where we have to consider three different pricing regimes. These

regimes reflect the three possibilities that agent It either has an optimistic, or a pessimistic

or no confirmatory bias.

Equilibrium pricing scheme. Fix switching parameter n ≥ 1. For all t ≥ 0, the period

t equilibrium price is determined as follows

p∗t =


poptt if yt−n < ... < yt,

ppesst if yt−n > ... > yt,

pFB
t else.

The following findings establish for all three pricing regimes the existence of unique

period t equilibrium prices poptt , ppesst , and pFB
t conditional on received information It =

(y0, .., yt). A formal derivation of these findings in done in Appendix A.1.
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“Optimistically biased pricing regime”. Suppose that agent It is optimistically bi-

ased. Then there exists a unique period t equilibrium asset price such that

poptt = δItopt ·
∞∑

s=t+1

minMt,s ·maxYs +
(
1− δItopt

)
· pEU

t

such that

δItopt =
δ · λ

δ · λ+ (1− δ) · π (It)

whenever the transversality condition

lim
s→∞

(
Mt,s · popts

)
= 0

holds.

“Pessimistically biased pricing regime”. Suppose that agent It is pessimistically

biased. Then there exists a unique period t equilibrium asset price such that

ppesst = δItpess ·
∞∑

s=t+1

maxMt,s ·minYs

+
(
1− δItpess

)
· pEU

t

such that

δItpess =
δ · (1− λ)

δ · (1− λ) + (1− δ) · π (It)
.

whenever the transversality condition

lim
s→∞

(Mt,s · ppesss ) = 0

holds.

“Full Bayesian pricing regime”. Suppose that agent It is neither optimistically nor

pessimistically biased. Then there exists a unique period t equilibrium asset price such

that

pFB
t = δItFB ·

(
λ

∞∑
s=t+1

minMt,s ·maxYs + (1− λ)
∞∑

s=t+1

maxMt,s ·minYs

)
+
(
1− δItFB

)
· pEU

t
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such that

δItFB =
δ

δ + (1− δ) · π (It)
.

whenever the transversality condition

lim
s→∞

(
Mt,s · pFB

s

)
= 0

holds.

Under the assumption that the subjective additive measure π coincides with the objec-

tive probability measure, we can think of (21) as the “correct” price. This properly takes

into account the stochastic process of economic fundamentals as well as the representative

agent’s “tastes” for intertemporal consumption smoothing as expressed by the stochastic

discount factor. For almost risk-neutral agents, whose stochastic discount factor, Mt,s, is

approximately given by time-discount factor βs−t, we readily obtain the following result.

Observation 4. Consider (almost) risk-neutral agents with ambiguity parameter δ > 0.

(i) The optimistic pricing regime always overprices the asset in the sense that poptt >

pEU
t .

(ii) The pessimistic pricing regime always underprices the asset in the sense that

ppesst < pEU
t .

(iii) The full Bayesian pricing regime overprices the asset iff

∞∑
s=t+1

βs−t · (λmaxYs + (1− λ) ·minYs) >
∞∑

s=t+1

βs−t · E [Ys, π] (22)

whereby

ppesst < pFB
t < poptt . (23)

5 Underreaction and overreaction revisited

Rewriting the formal definitions of underreaction (2) and overreaction (3) in terms of divi-

dend increases, respectively decreases, gives:
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• Underreaction to a sequence of j ≥ 1 good news:

E [Rt+1, π (· | yt−j−1 > yt−j < ... < yt)] > E [Rt+1, π (· | yt−j−1 < yt−j > ... > yt)] .

(24)

• Overreaction to a sequence of j ≥ 1 good news:

E [Rt+1, π (· | yt−j−1 > yt−j < ... < yt)] < E [Rt+1, π (· | yt−j−1 < yt−j > ... > yt)] .

(25)

For illustrative reasons we assume that the subjective additive part of the agents’ neo-

additive capacity, i.e., π, coincides with the “objective” probability measure that governs the

dividend payment process (Yt)t≥0. We further assume that the Yt ∈ {minY, ...,maxY } are

i.i.d. and that π has full support on {minY, ...,maxY }. The following Proposition (proved

in detail in Appendix A.2) comprehensively describes the conditions under which our model

generates underreaction, respectively overreaction, for any given probability measure π.

Proposition. Consider (almost) risk-neutral agents with ambiguity parameter δ > 0 and

fix switching parameter n ≥ 1.

(i) Let j < n− 1. Then

E [Rt+1, π (· | yt−j−1 > yt−j < ... < yt)] = E [Rt+1, π (· | yt−j−1 < yt−j > ... > yt)] .

(26)

(ii) Let j = n− 1. Then underreaction (24) holds for all histories such that

(yt−j−1 > yt−j < ... < yt) with yt ̸= maxY or (27)

(yt−j−1 < yt−j > ... > yt) with yt ̸= minY .

For histories

(yt−j−1 > yt−j < ... < maxY ) and (28)

(yt−j−1 < yt−j > ... > minY ) ,

we have instead

E [Rt+1, π (· | yt−j−1 > yt−j < ... < maxY )] = E [Rt+1, π (· | yt−j−1 < yt−j > ... > minY )] .

(29)
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(iii) Let j ≥ n. Then overreaction (25) holds whenever t is sufficiently large.

For i.i.d. dividend payments, expected returns remain constant across all possible divi-

dend news as long as no change in the pricing regime is triggered in period t+ 1. By part

(i) of the Proposition, this is the case in our model if the number of good (resp. bad) news

that could be observed in period t+1 is less than the value of the switching parameter, i.e.,

if j+1 < n. If the set of possible dividend payments {minY, ...,maxY } contains at least n

elements, histories like (27) will occur with strictly positive probability. As a consequence,

there will be, by part (ii) of the Proposition, underreaction with probability one whenever

the number of good (resp. bad) news that are possibly observable in period t+1 equals the

value of the switching parameter, i.e., if j +1 = n. Finally, by part (iii) of the Proposition,

our model will always generate overreaction in case the number of good (resp. bad) news

that are possibly observable in period t+1 is strictly greater than the value of the switching

parameter, i.e., if j + 1 > n.

Observe that our model generates a very distinctive pattern of under- versus overreac-

tion: For a strictly increasing number of good (resp. bad) news there will be eventually

underreaction, immediately followed by overreaction if the number of good (resp. bad) news

increases further. Consequently, any empirical return pattern (for i.i.d. dividend payments)

that initially generates overreaction whereas it generates underreaction when the number

of good (resp. bad) news increases is not compatible with our model. Turn now to the

empirically predominant phenomena (4) and (5), discussed in Barberis et al. (1998), and

rewrite them in terms of dividend changes as follows.

• Underreaction to a single period of good news:

E [Rt+1, π (· | yt−2 > yt−1 < yt)] > E [Rt+1, π (· | yt−2 < yt−1 > yt)] . (30)

• Overreaction to multiple periods of good news: For all j ≥ 2,

E [Rt+1, π (· | yt−j−1 > yt−j < ... < yt)] < E [Rt+1, π (· | yt−j−1 < yt−j > ... > yt)] .

(31)

By the Proposition, underreaction to a single period of good news, i.e., j = 1, happens

if and only if n = 2. Furthermore, for n = 2 part (iii) of the Proposition implies that

overreaction to multiple periods of good news will occur for sufficiently large t.
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Corollary. Fix the assumptions of the Proposition. Our model simultaneously generates

underreaction to a single period of good news as well as overreaction to multiple periods

of good news (in the long run), if and only if, we have that the switching parameter

is n = 2.

Remark. Notice that the above results rely on the assumption of i.i.d. dividend

payments. By this i.i.d. assumption, we can neglect for the inequalities (24) and (25) the

expected dividend payments for period t + 1 since we have for the lhs and rhs of both

inequalities

E [Yt+1, π (· | yt−j−1 > yt−j < ... < yt)] = E [Yt+1, π (· | yt−j−1 < yt−1 > ... > yt)] (32)

= E [Yt+1, π] .

As a consequence, our findings on period t + 1 returns are exclusively driven by proper-

ties of equilibrium prices p∗t , p
∗
t+1. The situation would be different—and technically more

complex—if we give up the i.i.d. assumption. For example, if we consider a dividend pro-

cess given as a symmetric random walk (as., e.g., in Barberis et al. 1998), we have, on

average, that

E [Yt+1, π (· | yt−j−1 > yt−j < ... < yt)] > E [Yt+1, π (· | yt−j−1 < yt−1 > ... > yt)] (33)

because the expected value of next period dividend payments, being equal to the present

period’s dividend payment, will be on average higher for increasing than for decreasing

sequences. But if (33) instead of (32) holds on average, this would imply for our model that

overreaction becomes harder to establish whereas underreaction becomes easier to establish.

We regard it as an interesting task for future research to look into possible generalizations

of our results to stationary Markov dividend processes.

6 A numerical illustration of equilibrium returns

We now take a calibrated version of our model in order to illustrate price patterns generated

by our model for different values of the confirmatory bias parameter n. In a next step, we

report that simulated returns accord with the predictions of our proposition and corollary

for different parameter constellations n and j. As the model is highly stylized, our exercise is

for illustrative purposes only and we do not attempt to provide a realistic parametrization.

Throughout, we assume that agents are risk neutral and that dividends are i.i.d..
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6.1 Calibration

We assume that dividends are distributed as i.i.d. normal with mean EY and variance σ2
Y .

We approximate this distribution by taking discrete realizations applying Gaussian quadra-

ture methods using Chebychev nodes and weights. We set EY = 1.5, σY = 0.1, and

take m = 11 discrete realizations (nodes).

By the assumptions of risk-neutrality and i.i.d. dividends, the equilibrium price under

rational expectations in equation (21) is given by

pEU
t =

∞∑
s=t+1

βt−sEY =
β

1− β
EY.

Consequently, the expected return under rational expectations is

EREU
t+1 = 1 + ErEU

t+1 = E
pEU
t+1 + Yt+1

pEU
t

=
1

β
.

We interpret the frequency of our model as annual and therefore consider as a realistic

value for the real return on the risky asset under rational expectations ErEU
t+1 = 0.075. With

this target value, the implied value for the annual discount factor is

β =
1

EREU
t+1

= 0.93023

and we therefore have that

pEU
t =

β

1− β
EY =

1

ErEU
t+1

EY = 20.

According to section 4, asset prices in the three pricing regimes according to our as-

sumptions are given by

poptt = δtopt ·
β

1− β
·maxY +

(
1− δtopt

)
· pEU

t

with

δtopt =
δ · λ

δ · λ+ (1− δ) ·
∏t

s=0 π(ys)
,

as well as

ppesst = δtpess ·
β

1− β
·minY +

(
1− δtpess

)
· pEU

t

with

δtpess =
δ · (1− λ)

δ · (1− λ) + (1− δ) ·
∏t

s=0 π(ys)
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and

pFB
t = δtFB · β

1− β
· (λ ·maxY + (1− λ) ·minY ) +

(
1− δtFB

)
· pEU

t

with

δtFB =
δ

δ + (1− δ) ·
∏t

s=0 π(ys)
.

We focus our analysis on the stationary state of the model and set δ = δ∞ = 1.10

Corresponding equilibrium prices are:

poptt =
β

1− β
·maxY

ppesst =
β

1− β
·minY

pFB
t =

β

1− β
· (λ ·maxY + (1− λ) ·minY ) .

We determine the value of λ such that in all periods t the price under rational expec-

tations is the same as in the full Bayesian pricing regime. This means that we rule out

overpricing, respectively underpricing, in the full Bayesian pricing regime, cf. Equation (22).

We accordingly solve

pFB
t = δtFB · β

1− β
· (min(Y ) + λ(max(Y )−min(Y ))) + (1− δFB

t )pEU
t = pEU

t

for λ which, given that the distribution of dividends is symmetric, results in λ = 0.5.

We consider four different scenarios for switches of pricing regimes according to our

heuristic as described in subsection 3.2. Recall from these heuristics that, starting from

the dividend payment in period t − n, yt−n, it takes a sequence of length n of increasing,

respectively decreasing, dividend realizations to induce a shift to the optimistic, respectively

pessimistic, pricing regime. We set n ∈ {1, . . . , 3}. When evaluating the conditional return

expressions in equation (24), respectively equation (25), numerically, we set j ∈ {1, . . . , 4}.
We then report results on returns for all combinations n⊗ j.

We take the number of periods to be T = 200 and discard the first 99 observations.

Throughout, we compute averages over M = 5000 stochastic simulations.

All calibration parameters of our model are summarized in Table 1.

10As convergence of
∏t

s=0 π(ys) → 0 is fast, this would be reached in few periods only, even for very low

levels of initial ambiguity, e.g., δ0 = 1.0E−10.
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Table 1: Calibration

Expected value of dividends, EY 1.5

Standard Deviation of dividends, σY 0.1

Number of nodes, m 11

Expected rate of return, ErEU
t+1 0.075

Discount factor, β 0.93023

Degree of pessimism, λ 0.5

Degree of ambiguity, δ 1.0

Confirmatory bias parameter, n {1, . . . , 3}
Sequence of good (bad) news, j {1, . . . , 4}
Time Horizon, T 200

Stochastic Simulations, M 1000

6.2 Results

We start by an illustration of the time paths of key variables for the first stochastic sim-

ulation, m = 1. Panel (a) of Figure 1 displays the random time path of dividends for

periods 100 − 200, the exogenous driving process of our model. In panel (b) of the same

figure, we zoom in a selected period 180-185. In this period, we observe a path of increasing

dividend realizations between t = 181 and t = 184.

We next analyze equilibrium prices and returns for this stochastic simulation. We

focus on two scenarios where n = 2, respectively n = 3. Equilibrium asset returns in

the three pricing regimes are shown, for the two alternative parameterizations of n, in

figures 2–3. In each figure, the rational expectations equilibrium return is the solid black

line (respectively black squares). The actual equilibrium returns emanating in our model

are shown as dashed blue lines (respectively blue diamonds). Furthermore, Table 2 provides

summary information for selected time period 180− 185 and endogenous prices, prices plus

dividends and returns in this period.

We start with the case where n = 3, i.e., the series of dividend realizations yt−3 > . . . >

yt, respectively yt−3 < . . . < yt, induces a shift in t to the optimistic, respectively pessimistic,

pricing regime. For n = 3 such a shift is very unlikely, and, as seen from Figure 2, only one

occurs. As dividend payments monotonically increase from t = 181 to t = 184, cf. panel (b)

in Figure 1, prices shift to the optimistic regime in t = 184, cf. Table 2. As dividend
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Figure 1: Dividends
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180 181 182 183 184 185
1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

period

y t

Dividends − Selected Periods

payments then decrease from t = 184 to t = 185, prices revert back to the full Bayesian

pricing regime in t = 185. Accordingly, the return in t = 184 is above 40 percent and, as

a consequence of trend reversal in prices, at below −20% in t = 185. Resulting returns in

this subperiod are displayed in panel (b) of Figure 2.

In case that n = 2, the series of dividend realizations yt−2 > . . . > yt, respectively yt−2 <

. . . < yt induces a shift in t to the optimistic, respectively pessimistic, pricing regime.

Accordingly, shifts between regimes are more likely to occur and, during period 100 to 200,

we observe 8 cases with optimistic and 9 cases with pessimistic pricing regimes, cf. panel (a)

of Figure 3. Notice that this includes cases in which optimistic, respectively pessimistic,

pricing regimes persist for at least two subsequent periods.

It is again instructive to more closely look at subperiod 180−185, displayed in panel (b)

of Figure 3. In comparison to the case where n = 3, the shift to the optimistic pricing regime

now already occurs in t = 183, also see Table 2. Accordingly, the return in t = 183 jumps

up to above 40 percent. In t = 184, the optimistic pricing regime continues to be in place.

Hence, the return moves down to roughly 6 percent which is lower than the return under

rational expectations due to the higher base price in t = 183. Finally, when prices revert

to the full Bayesian regime t = 185, the return is again less than 20 percent.
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Figure 2: Returns: n = 3
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Figure 3: Returns: n = 2
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Table 2: Summary: Selected Periods

t R.E. Actual (n=3) Actual (n=2)

Prices

180 20.00 20.00 20.00

181 20.00 20.00 20.00

182 20.00 20.00 20.00

183 20.00 20.00 26.92

184 20.00 26.92 26.92

185 20.00 20.00 20.00

Prices plus Dividends

180 21.50 21.50 21.50

181 21.41 21.41 21.41

182 21.50 21.50 21.50

183 21.59 21.59 28.51

184 21.69 28.60 28.60

185 21.41 21.41 21.41

Returns

181 0.0704 0.0704 0.0704

182 0.0750 0.0750 0.0750

183 0.0796 0.0796 0.4255

184 0.0844 0.4302 0.0627

185 0.0704 -0.2047 -0.2047

186 0.0704 0.0704 0.0704
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Finally, we evaluate conditional expected returns, cf. equation (24), respectively (25),

by averaging across all 5000 simulation periods. We do so for all combinations of n ∈
{1, . . . , 3} and j ∈ {1, . . . , 4}. Results are summarized in Table 3. These confirm our

Proposition and Corollary. First, turn to the case where n = 3, j = 1 for which we

have E [Rt+1, π (· | yt−2 > yt−1 < yt)] = E [Rt+1, π (· | yt−2 < yt−1 > yt)] (subject to a nu-

merical tolerance set to 1.0e − 06), cf. Proposition (i). Second, observe that for all com-

binations j ≥ n we have overreaction, cf. Proposition (iii). Third, for n = 2 we observe

underreaction when j = 1, as stated in Proposition (ii) and the Corollary. Fourth, un-

derreaction is observed for n = 3 only when j = n − 1 = 2, cf. Proposition (ii) and the

Corollary.

Table 3: Expected Returns

E [Rt+1, π (· | yt−j−1 > yt−j < ... < yt)] E [Rt+1, π (· | yt−j−1 < yt−j > ... > yt)]

n = 1, j = 1 -0.2803 0.8056

n = 1, j = 2 -0.3605 0.9711

n = 1, j = 3 -0.4107 1.0535

n = 1, j = 4 -0.4334 1.1355

n = 2, j = 1 0.1494 0.0004

n = 2, j = 2 -0.1778 0.5949

n = 2, j = 3 -0.1927 0.6195

n = 2, j = 4 -0.2011 0.6437

n = 3, j = 1 0.0750 0.0750

n = 3, j = 2 0.1065 0.0433

n = 3, j = 3 -0.1927 0.6195

n = 3, j = 4 -0.2011 0.6437
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7 Related literature and critical discussion

To model underreaction and overreaction, the existing literature considers three different

scenarios with respect to the nature and reception of information about a firm’s earnings.

Daniel, Hirshleifer, and Subrahmanyam (1998) differentiate between public and private

information whereby investors are assumed to believe too strongly in their own information

and discount public signals. Consequently, there is underreaction to public information

but overreaction to private information. Hong and Stein (1999) base their theory on the

assumption that there exist heterogenous groups of investors which differ in their reactions

to public news. In particular, one of these groups ignores news but reacts to prices only.

As a consequence, there is initial underreaction followed by subsequent overreaction.

Most closely related to our own approach is Barberis, Shleifer and Vishny (1998) (BSV).

BSV consider a representative investor whose beliefs deviate from rational expectations

because of stylized psychological attitudes such as “conservatism” and “overconfidence”.

Formally, BSV describe the “true” dividend process as a symmetric random walk gov-

erned by objective probability measure π. As a deviation from the rational expectations

paradigm, the representative investor bases his portfolio maximization problem on a sub-

jective additive probability measure π̃ ̸= π which is constructed in a highly non-stationary

way. More specifically, BSV stipulate that the investor considers exactly two different

regimes as possible—one regime with positive the other regime with negative correlation

between today’s and tomorrow’s dividends. These two different stochastic processes are

combined through subjective regime-switching probabilities into an aggregate stochastic

process of dividend payments governed by subjective measure π̃. As their main formal re-

sult BSV prove—under specific parametric assumptions—that conditional subjective prob-

ability measures π̃ (ω | y1, ..., yt) can generate underreaction and overreaction in the sense

of (4) and (5).

On the one hand, the article by BSV is a highlight in the financial economics literature

because it identifies and addresses in a very precise way empirical pricing phenomena that

violate the EMH. On the other hand, however, the behavioral approach of BSV is quite

ad hoc in that the formal construction of subjective probability measure π̃ directly aims at

generating return patterns (4) and (5) whereby any psychological explanation of this specific

formalism in terms of conservatism and representativeness remains vague—too vague for our

taste. In contrast to BSV, our model is less ad-hoc. Our formalism is based on axiomatically

founded Bayesian update rules that admit for straightforward psychological interpretation

within the framework of Choquet decision theory.
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Our own behavioral ad hoc assumption is a plausible confirmatory bias heuristic. It

links a sequence of good, respectively bad, news to the optimistic, respectively, pessimistic

Bayesian update rule. Remaining sequences of news are updated through the full Bayesian

update rule. Whether such an ad hoc link between good (bad) news and the optimistic

(pessimistic) interpretation of such news is viable, is ultimately an empirical question which

we want to address in future research. Nevertheless, the fact that this simple confirmatory

bias heuristic is indeed able to generate the return patterns (4) and (5) came rather un-

expected to us since—unlike BSV—nothing in our set-up has been intentionally “geared”

towards the possible generation of under- and overreaction.

Also notice that our approach addresses an important self-criticism of BSV who remark:

“The idea that the investor believes that the world is governed by one of the two incorrect

models is a crude way of capturing the psychological phenomena of the previous section.”

(p. 318). While BSV thus introduce the inability of agents to learn the correct earnings

process in the long run by assumption, our model gives rise to it by our description of

agents’ beliefs as non-additive probability measures. Further observe that our agent is a

Bayesian decision maker in the sense that he holds a unique prior neo-additive belief defined

over all possible future events which he updates through an application of Bayesian update

rules. Zimper and Ludwig (2009) and Zimper (2009, 2011) also demonstrate that Bayesian

learning of neo-additive beliefs with respect to update rules considered in this paper does, in

general, not converge to correct (additive) probabilities when the agent observes arbitrarily

large samples drawn from some i.i.d. process. As a consequence, our approach is not prone

to the standard criticism against the relevance of incorrect beliefs stating that subjective

beliefs of Bayesian learners will eventually converge to true probabilities.11

On purpose, we develop—by our restriction to neo-additive capacities—a parsimonious

model and keep the analysis extremely stylized. As a drawback of this theoretically sound

but stylized approach, behavior of our agents exhibits several unrealistic features to the

effect that the present version of the model clearly lacks in realistic appeal. In particu-

lar, convergence of the Bayesian updating process of neo-additive capacities happens very

11Rabin (1998) reports empirical studies which do not support the conjecture that learning necessarily

decreases biases. The models of biased Bayesian learning developed in Zimper and Ludwig (2009) and

Zimper (2009, 2011) describe an agent’s posterior neo-additive estimator for the likelihood of an event as

the conditional Choquet expected value of the (unique) likelihood random variable taking on values in [0, 1].

For alternative learning models with Bayesian overtones that may result in biased (i.e., ambiguous) long-

term estimators see Epstein and Schneider (2007, 2008) who introduce multiple likelihoods and Epstein et

al. (2010) who consider behaviorally motivated ad hoc deviations from rational Bayesian learning.
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quickly so that the agents of our model soon go for the extrema of a maximal and a minimal

asset value whenever they have observed a sufficiently long sequence of good, respectively

bad, news. Consequently, price patterns generated by our model crucially depend on the

specification of such maximal and minimal asset values whereby such specification might

amount to a rather arbitrary exercise.12 We also think that real-life agents—even behav-

iorally biased ones—are far more moderate than it is implied by our model and do not

switch between such possible extrema just because some sequence of news triggers an op-

timistic or pessimistic reaction. We therefore regard it as an important avenue for future

research to develop a sound decision-theoretic framework that has more behavioral appeal

than the neo-additive framework. The main challenge will consist in keeping such a more

realistic framework as parsimonious as possible.

8 Concluding remarks and outlook

Based on decision-theoretic first principles we introduce a behavioral model of asset price

fluctuations which violates the rational beliefs paradigm in two different ways. First, agents

have an incorrect world view because—due to their confirmatory bias—their subjective

beliefs about economic fundamentals do not coincide with the objective distribution of

these fundamentals regardless of how much information the agents receive. Second, agents

incorrectly assume that their future selves interpret new information in the same way as

they do. As an interesting feature, our model generates equilibrium price patterns that

reflect underreaction of asset prices with respect to one period of good news as well as

overreaction with respect to several periods of good news. These empirical phenomena

have received substantial attention in the behavioral finance literature. In contrast to our

approach, however, previous formal explanations for these phenomena were rather ad hoc

and have not been derived from decision-theoretic first principles.

The key message of this paper is to illustrate how such pricing phenomena emerge from

a non-standard model of Bayesian updating with a sound decision theoretic basis. Different

Bayesian update rules for non-additive beliefs give rise to different pricing regimes: an op-

timistic, a pessimistic, and an “in between” full Bayesian pricing regime. Furthermore, our

12In a different application, Ludwig and Zimper (2012) relax such a convergence result by postulating

limited memory. Using an equivalent assumption here would imply that prices in the optimistic, respectively

pessimistic, regime would be determined by some weighted average between the maximal, respectively

minimal, asset value and the rational expectations outcome. Qualitatively our results would, however, not

change.
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confirmatory bias heuristic governs switches between these regimes. Our formal approach

gives rise to model-endogenous concepts of “optimistic overpricing“ and “pessimistic under-

pricing”. The benchmark case of “correct” prices obtains whenever the agents’ non-additive

beliefs effectively reduce to an additive probability measure. As a consequence, the EMH

is satisfied in our model if and only if the agents’ subjective beliefs do not express any

ambiguity with respect to the true stochastic process driving economic fundamentals.

Our current work extends this framework to develop a joint model for asset pricing

anomalies such as the equity premium and excess volatility puzzles (Mehra and Prescott

1985; Shiller 1981). As such, our current research focuses on a joint theory for normal times,

i.e., periods with standard asset price fluctuations, and exceptional times, i.e., periods with

sizable booms and busts.
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A Appendix

A.1 Deriving the equilibrium price process

Observe that—independent of the specific choice of (zt, zt+1, ...)—the maximal, respectively

minimal, economic outcome occurs for every portfolio-choice in the same state (maxY1,maxY2, ...) ∈
Ω resp. (minY1,minY2, ...) ∈ Ω. Because of this fact and because of our assumption that

every agent It assumes that νIt (· | ·) governs the beliefs of his future selves, we can trans-

form the neo-additive Choquet expected utility maximization problem into an equivalent

(standard) expected utility maximization problem for conveniently constructed additive

probability measures πIt
opt, π

It
pess and πIt

FB. We thereby obtain the following equivalent max-

imization problems for the respective pricing regimes.

Optimistic pricing regime:

max
(zt,zt+1,...)

u (ct) + E

[
∞∑

s=t+1

βs−tu (cs) , ν
It (· | ·)

]

= max
(zt,zt+1,...)

u (ct) + E

[
∞∑

s=t+1

βs−tu (cs) , π
It
opt (ys+1 | y0, .., ys)

]
such that

πIt
opt (ys+1 | y0, .., ys) =

{
δItopt +

(
1− δItopt

)
· π (ys+1 | y0, .., ys) for ys+1 = maxYs+1(

1− δItopt
)
· π (ys+1 | y0, .., ys) for ys+1 < maxYs+1

Pessimistic pricing regime:

max
(zt,zt+1,...)

u (ct) + E

[
∞∑

s=t+1

βs−tu (cs) , ν
It (· | ·)

]

= max
(zt,zt+1,...)

u (ct) + E

[
∞∑

s=t+1

βs−tu (cs) , π
It
pess (ys+1 | y0, .., ys)

]
such that

πIt
pess (ys+1 | y0, .., ys) =

{
δItpess +

(
1− δItpess

)
· π (ys+1 | y0, .., ys) if ys+1 = minYs+1(

1− δItpess
)
· π (ys+1 | y0, .., ys) if ys+1 > minYs+1.

Full Bayesian pricing regime:

max
(zt,zt+1,...)

u (ct) + E

[
∞∑

s=t+1

βs−tu (cs) , ν
It (· | ·)

]

= max
(zt,zt+1,...)

u (ct) + E

[
∞∑

s=t+1

βs−tu (cs) , π
It
FB (ys+1 | y0, .., ys)

]
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such that

πIt
FB (ys+1 | y0, .., ys)

=


δItFB · λ+

(
1− δItFB

)
· π (ys+1 | y0, .., ys) if ys+1 = maxYs+1(

1− δItFB

)
· π (ys+1 | y0, .., ys) if minYs+1 < ys+1 < maxYs+1

δItFB · (1− λ) +
(
1− δItFB

)
· π (ys+1 | y0, .., ys) if ys+1 = minYs+1.

Given this transformation of the CEU into an EU maximization problem the above

results follow readily from standard arguments. For sake of completeness we demonstrate

this for the optimistically biased pricing regime. Consider an optimistically biased agent so

that

E

[
∞∑

s=t+1

βs−tu (cs) , ν
It (· | ·)

]

= δItopt ·max
ω∈It

∞∑
s=t+1

βs−tu (cs) +
(
1− δItopt

)
· E

[
∞∑

s=t+1

βs−tu (cs) , π (ys+1 | y0, .., ys)

]
.

The corresponding period s first order conditions, evaluated at equilibrium allocation z∗t = 1

for all t, imply

p∗s = δItopt · β · u
′ (maxYs+1)

u′ (ys)
·
(
maxYs+1 + p∗s+1

)
+
(
1− δItopt

)
· E
[
β · u

′ (Ys+1)

u′ (ys)
·
(
Ys+1 + p∗s+1

)
, π (ys+1 | y0, .., ys)

]
= δItopt ·minMs,s+1 ·

(
maxYs+1 + p∗s+1

)
+
(
1− δItopt

)
· E
[
Ms,s+1 ·

(
Ys+1 + p∗s+1

)
, π (ys+1 | y0, .., ys)

]
for all s ≥ t. Notice that

minMs,s+1 = β · u
′ (maxYs+1)

u′ (ys)

follows from concavity of u. As a consequence, any period t equilibrium asset price poptt is

characterized by the following system of equations

popts = E
[
Ms,s+1 ·

(
Ys+1 + popts+1

)
, πIt

opt (ys+1 | y0, .., ys)
]

≡ Eopt
s

[
Ms,s+1 ·

(
Ys+1 + popts+1

)]
for all s ≥ t with πIt

opt (ys+1 | y0, .., ys) defined above. Substitute

poptt+1 = Eopt
t+1

[
mt+1,t+2 ·

(
Yt+2 + poptt+2

)]
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in

poptt = Eopt
t

[
Mt,t+1 ·

(
Yt+1 + poptt+1

)]
and observe that

poptt = Eopt
t

[
Mt,t+1 ·

(
Yt+1 + Eopt

t+1

[
Mt+1,t+2 ·

(
Yt+2 + poptt+2

)])]
= Eopt

t [Mt,t+1 · Yt+1] + Eopt
t

[
Mt,t+1 · Eopt

t+1

[
Mt+1,t+2 ·

(
Yt+2 + poptt+2

)]]
= Eopt

t [Mt,t+1 · Yt+1] + Eopt
t

[
Eopt

t+1

[
Mt,t+1 ·Mt+1,t+2 ·

(
Yt+2 + poptt+2

)]]
= Eopt

t [Mt,t+1 · Yt+1] + Eopt
t

[
Eopt

t+1

[
Mt,t+2 ·

(
Yt+2 + poptt+2

)]]
= Eopt

t [Mt,t+1 · Yt+1] + Eopt
t [Mt,t+2 · Yt+2] + Eopt

t

[
Mt,t+2 · poptt+2

]
.

The third line results from the fact that the random variable Mt,t+1 is a constant with

respect to any given Eopt
t+1 and the fifth line is implied by the law of iterative expectations

for additive probability measures. Applying the same reasoning to poptt+2, p
opt
t+2, ...gives the

desired result whenever the transversality condition is satisfied.�

Remark. The key to the formal derivation of the equilibrium prices in the above proof

is the fact that our assumptions allow us to transform the Choquet expected utility opti-

mization problems into equivalent expected utility optimization problems. Hence, standard

arguments such as sufficient characterization of global optima by first order conditions as

well as the law of iterated expectations go through. This formal equivalence would break

down if we had considered a portfolio choice problem with several assets that do not have a

comonotonic payoff-structure. Technically speaking, the corresponding portfolio optimiza-

tion problem would then exhibit kinks so that first order conditions are no longer sufficient

criteria for global optima.

A.2 Formal proof of the proposition

Step 1. Observe that

E [Yt+1, π (· | yt−j−1 > yt−j < ... < yt)] = E [Yt+1, π (· | yt−j−1 < yt−1 > ... > yt)]

= E [Yt+1, π] ,

for j ≥ 1, by the independence assumption.
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Step 2. Fix some n and consider some j < n. Then yt−j−1 > yt−j < ... < yt implies

p∗t = pFB
t so that

E

[
p∗t+1 + Yt+1

p∗t
, π (· | yt−j−1 > yt−j < ... < yt)

]
=

E
[
p∗t+1, π (· | yt−j−1 > yt−j < ... < yt)

]
+ E [Yt+1, π]

pFB
t

.

Similarly, yt−j−1 < yt−j > ... > yt implies

E

[
p∗t+1 + Yt+1

p∗t
, π (· | yt−j−1 < yt−j > ... > yt)

]
=

E
[
p∗t+1, π (· | yt−j−1 < yt−j > ... > yt)

]
+ E [Yt+1, π]

pFB
t

.

Consequently,

E [Rt+1, π (· | yt−j−1 > yt−j < ... < yt)] > E [Rt+1, π (· | yt−j−1 < yt−j > ... > yt)]

is satisfied, if and only if,

E
[
p∗t+1, π (· | yt−j−1 > yt−j < ... < yt)

]
> E

[
p∗t+1, π (· | yt−j−1 < yt−j > ... > yt)

]
. (34)

Step 3. Consider the case j < n− 1. Then p∗t+1 = pFB
t+1 for good as well as for bad news

so that

E
[
p∗t+1, π (· | yt−j−1 > yt−j < ... < yt)

]
= E

[
p∗t+1, π (· | yt−j−1 < yt−j > ... > yt)

]
⇔

E [Rt+1, π (· | yt−j−1 > yt−j < ... < yt)] = E [Rt+1, π (· | yt−j−1 < yt−j > ... > yt)] .

Consequently, there is neither underreaction nor overreaction. This proves (26).

Step 4. Consider the case j = n− 1. Then p∗t+1 results for good news in period t either

from the optimistic or from the full Bayesian pricing regime, i.e.,

E
[
p∗t+1, π (· | yt−j−1 > yt−j < ... < yt)

]
= E

[
poptt+1, π (· | yt−j−1 > yt−j < ... < yt < yt+1)

]
· π (yt < yt+1)

+E
[
pFB
t+1, π (· | yt−j−1 > yt−j < ... < yt ≥ yt+1)

]
· π (yt ≥ yt+1)

For bad news in period t, p∗t+1 follows either from the pessimistic or from the full Bayesian

pricing regime, i.e.,

E
[
p∗t+1, π (· | yt−j−1 < yt−j > ... > yt)

]
= E

[
ppesst+1 , π (· | yt−j−1 < yt−j > ... > yt > yt+1)

]
· π (yt > yt+1)

+E
[
pFB
t+1, π (· | yt−j−1 < yt−j > ... > yt ≤ yt+1)

]
· π (yt ≤ yt+1) .
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If the histories satisfy condition (27), then

π (yt−j−1 > yt−j < ... < yt < yt+1t) > 0 or

π (yt−j−1 < yt−j > ... > yt > yt+1) > 0.

Together with (23), the lhs in (34) first-order stochastically dominates the lhs in (34) so

that we obtain underreaction for j = n− 1. If, instead, (28) holds, then

π (yt−j−1 > yt−j < ... < yt < yt+1) = 0 and

π (yt−j−1 < yt−j > ... > yt > yt+1) = 0.

This proves (29).�
Step 5. Consider the case j ≥ n. Then p∗t = poptt for history yt−j−1 > yt−j < ... < yt

and p∗t = ppesst for history yt−j−1 < yt−j > ... > yt. Consequently,

E [Rt+1, π (· | yt−j−1 > yt−j < ... < yt)]

=
E
[
p∗t+1, π (· | yt−j−1 > yt−j < ... < yt)

]
+ E [Yt+1, π]

poptt

and

E [Rt+1, π (· | yt−j−1 < yt−j > ... > yt)]

=
E
[
p∗t+1, π (· | yt−j−1 < yt−j > ... > yt)

]
+ E [Yt+1, π]

ppesst

.

Because
E [Yt+1, π]

poptt

<
E [Yt+1, π]

ppesst

,

our model generates overreaction (3) if the sufficient condition

E
[
p∗t+1, π (· | yt−j−1 > yt−j < ... < yt)

]
poptt

≤
E
[
p∗t+1, π (· | yt−j−1 < yt−j > ... > yt)

]
ppesst

(35)

is satisfied. If j ≥ n, p∗t+1 results for good news in period t either from the optimistic or

full Bayesian pricing regime, i.e.,

E
[
p∗t+1, π (· | yt−j−1 > yt−j < ... < yt)

]
= E

[
poptt+1, π (· | yt−j−1 > yt−j < ... < yt < yt+1)

]
· π (yt < yt+1)

+E
[
pFB
t+1, π (· | yt−j−1 > yt−j < ... < yt ≥ yt+1)

]
· π (yt ≥ yt+1) .
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Accordingly, p∗t+j results for bad news either from the pessimistic or full Bayesian pricing

regime, i.e.,

E
[
p∗t+1, π (· | yt−j−1 < yt−j > ... > yt)

]
= E

[
ppesst+1 , π (· | yt−j−1 < yt−j > ... > yt > yt+1)

]
· π (yt > yt+1)

+E
[
pFB
t+1, π (· | yt−j−1 < yt−j > ... > yt ≤ yt+1)

]
· π (yt ≤ yt+1) .

Substituting in inequality (35) and rearranging gives(
E
[
poptt+1, π (· | yt−j−1 > yt−j < ... < yt < yt+1)

]
poptt

−
E
[
pFB
t+1, π (· | yt−j−1 < yt−j > ... > yt ≤ yt+1)

]
ppesst

)
·π (yt < yt+1)

≤

(
E
[
ppesst+1 , π (· | yt−j−1 < yt−j > ... > yt > yt+1)

]
ppesst

−
E
[
pFB
t+1, π (· | yt−j−1 > yt−j < ... < yt > yt+1)

]
poptt

)
·π (yt > yt+1)

+

(
E
[
pFB
t+1, π (· | yt−j−1 < yt−j > ... > yt = yt+1)

]
ppesst

−
E
[
pFB
t+j, π (· | yt−j−1 > yt−j < ... < yt = yt+j)

]
poptt

)
·π (yt = yt+1) (36)

By the i.i.d. assumption, limt→∞ π (It) = 0 for all It, which implies

lim
t→∞

δItopt = lim
t→∞

δItpess = lim
t→∞

δItFB = 1.

As a consequence, the respective equilibrium prices of any given regime converge to some

constant, i.e.,

lim
t→∞

poptt =
β

1− β
·maxY ,

lim
t→∞

ppesst =
β

1− β
·minY ,

lim
t→∞

pFB
t =

β

1− β
· (λ ·maxY + (1− λ) ·minY ) .

By continuity, the expected prices in (36) satisfy

E
[
poptt+1, π (· | ·)

]
≃ poptt ≃ β

1− β
·maxY ,

E
[
pFB
t+1, π (· | ·)

]
≃ pFB

t ≃ β

1− β
· (λ ·maxY + (1− λ) ·minY )

E
[
ppesst+1 , π (· | ·)

]
≃ ppesst ≃ β

1− β
·minY ,
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for sufficiently large t. Substituting in (36) gives, for sufficiently large t,(
1− pFB

t

ppesst

)
· π (yt < yt+1) ≤

(
1− pFB

t

poptt

)
· π (yt > yt+1)

+

(
pFB
t

ppesst

− pFB
t

poptt

)
· π (yt = yt+1) ,

which is always satisfied with strict inequality since the lhs is negative and the rhs is positive

because of poptt > pFB
t > ppesst . This proves overreaction for j ≥ n if t is sufficiently large.�
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