
I N N O V A T E 5 2 0 1 0107E S S A Y S

Students in the University of Pretoria’s
Department of Computer Science
do a third-year module on software
engineering, which gives them an
opportunity to learn about all those
skills and many more. This course
also requires students to complete
a practical year project, which
incorporates and assesses the
software development skills. One of
the students’ projects involved the
design and programming of a cellular
automata simulator.

Cellular automata

A cellular automaton (CA) is a regular
grid of cells that form a “world”. The
grid has finite dimensions and each of
its cells has its own internal state.

The project group was given the
opportunity to work on a software
simulator for cellular automata
applications. The system made
provision for triangular, rectangular
and hexagonal worlds. Their
software allowed the user to easily
enter the local transformation
rules for such worlds, to accurately
simulate the desired phenomena,
and to visualise the worlds in
either two-dimensional or three-
dimensional graphics, thus
bringing a simulation to “life” in an
aesthetically astonishing manner.

Internal states

Cellular automaton cells represent
a world and each has a particular
internal state. In a similar way, the
cells in a cellular automaton also
have internal states that can change
over time while the automaton is
active. In their software system, the
students used integer numbers to
represent those internal states. This
provided the user with a very large
number of possible cell states for
world simulations, and allowed for
very complex and feature-rich worlds
in their cellular automata simulation
environment.

Value ranges

The simulation of a cellular automaton
on “raw data” can often look complex
and confusing. However, by allowing
the user to associate intuitive colours
with ranges of internal state values,
the software makes such simulations
more meaningful, understandable,
sensible and comprehensive to the
user. In the students’ software system,
all value ranges are entered in a
manner that is familiar to mathematics
students, for example, 2<x<7 is
entered as (2;7), whereas 2<=x<7
is entered as [2;7). The software
system even supports the negative
infinity value, which is represented
as NEGINF, as well as the positive
infinity value, which is represented as
POSINF.

In order to assist the user in choosing
a colour for a specific numeric range
of states, the students programmed
a panel, shown in Figure 1, which
allows the user to slide the bars
when changing the RGB colour
values. Thus, the user is able to
easily select the appropriate colour
he or she desires, and the program
automatically converts the RGB
values to the popular hash colour
schemes used in HTML when the user
saves the chosen settings.

Transformation rules

The beauty of a cellular automaton
and its ability to dynamically model
so many different phenomena lie in
its transition rule system. This rule
system consists of a finite set of
rather simple rules that are applied
at many places simultaneously to
advance a cellular world to its next
configuration. In this way, one can
evolve a cellular world.

A rule is typically generic in the
sense that it applies to a set of
cells, not just to one particular cell,
and it consists of three main parts:
the current values/states of a cell’s

Software development

in today’s competitive

world is about more than

just writing (“coding”) a

computer program. Software

development is, however,

a complex process that

involves the capturing of

detailed specifications and

documentation, cooperating

efficiently in task groups,

and consulting with the

client, thereby gaining an

understanding of what the

client expects, and fulfilling

the client’s requirements with

a stable, high-quality product.

Advanced computing with cellular automata
by Andy Yang, Jamie Hirst, Pedro de Souza, Herah Khan and Andrew Shaw

I N N O V A T E 5 2 0 1 0108E S S A Y S

neighbours (application precondition),
the current value/state of the cell
itself (application precondition) and
the value/state the cell will change to,
should the two previous requirements
be met for a rule (application
postcondition). Hence, a rule will only
be applied if the first two requirements
hold, and the cell that matches the
two requirements will be “evolved”
to the new state, which is specified
in the application postcondition
mentioned above (everywhere, and
simultaneously, in the entire cellular
automaton).

In many situations, only certain values
or states are of importance for a rule.
To allow a rule to ignore the values
or states of neighbours that are
not of importance, the group made
provision for a special symbol in the
rule entering, namely the “*”, which
has the meaning of “any” or “accept
all” (see Figure 2). It enables the user
to focus only on those cell states
or values that really matter (rather
than the ones that do not). This “any”
symbol, which was adopted from the
theory of typed graph transformation
systems and generalised cellular
automata, allows the values or states
specified in the first two application
preconditions mentioned above.

Multiprocessing

Multiprocessing is one of the most
useful and complex capabilities of
the latest computers. It can make
a program far more efficient and
helps to increase the speed at
which a simulation takes place.
Consequently, the students decided
to implement their software system
in such a way that it is suitable for
multiprocessing.

Their software allows a user to
choose between one, two, four
and eight processors (CPUs).
Consequently, it divides the
rows (of a world) into the same
number of segments and creates a

processing thread for each segment.
Each thread is then responsible
for displaying and “evolving” the
segment of cells allocated to it
(see Figure 3). When this feature is
utilised, the world in the students’
simulations can evolve at a
reasonably rapid pace.

Simulation

The graphical display of any software-
based simulation is very important
to the user, as it influences what the
user can learn from performing this
simulation. It is often desirable to view
a simulation in a specific manner,
from a particular perspective, height,
angle, colour scheme or distance.
The software tool developed by the
students caters for this by allowing a
user two-dimensional (2-D) and three-
dimensional (3-D) modes.

Two-dimensional mode

This interface mode allows the user to
select multiple cells and easily adjust
their values. Some phenomena are
easier to view in a 2-D manner and
such functionality is also provided in
this view. The software allows users to
edit and view the simulation however
they want: zoom (in and out) and
translate (up, down, left and right).
See Figure 4.

Three-dimensional mode

This interface mode is designed to
run a simulation. It allows the user
to rotate a world (up, down, left
and right), zoom (in and out) and
enables scaling, thus allowing the
user to easily find the perfect way
to view his or her simulation. See
Figure 5.

 1. RGB changer.

 2. Rule-entering panel.

I N N O V A T E 5 2 0 1 0109E S S A Y S

Practical applications

When people think of cellular
automata, they often think of
Conway’s Game of Life. This relates
to physical phenomena such as algae
growth or the spreading of a virus.
However, since cellular automata
are known to be Turing-complete,
their applicability is constrained only
by the theoretical limits of Turing-
computability. Cellular automata
can be thought of as an advanced
form of a programming language,
whereby the applications for which
it can be used are mainly limited by
the capability of the programmer to
express his or her ideas.

Some interesting applications are
possible in computer graphics
nowadays. These are especially
apparent in the field of computer
games, where images need to be

rendered at an efficient speed. In
this particular field, a large amount
of program code is usually required
to determine the colours of particular
pixels (in terms of textures, normals
and lighting). Imagine being able to
program an entire world while only
worrying about a few simple sections
and leaving the rest to the system.
This will drastically reduce the amount
of program code to be written by the
programmer, whereby many mistakes
will be avoided, as the underlying
“engine” handles the rest, for example,
choosing the correct materials, lighting
and perhaps even the textures of a
graphical scenario. See Figure 6.

In the field of security, cellular
automata can offer biometric
authentication in an easy and
simple manner. This can be done,
for example, by dividing the eye or
fingerprint into a grid of cells (world)

and determining the relationship of
each cell to its neighbours. A neural
network could also be trained in this
manner, through supervised learning.
Afterwards, it could be used for a
strong form of authentication. See
Figure 7.

The project group's aim was to
show how powerful and diversely
usable a cellular automaton can be
by illustrating this in a manner that
non-experts would also understand
and be able to appreciate. In order to
do so, three main simulations were
developed.

During the FIFA 2010 World Cup,
many companies were looking for
new and innovative ways to reach as
many tourists as possible. To this end,
the student project team presented
a cellular automaton application,
which offered any organisation the
visual facility to reach new users
or viewers in a new, intriguing and
exciting manner. This would not only
draw attention, but also have a lasting
effect on all who see it. Think of a 3-D
image in the middle of the football
stadium that represents the flags of
the countries of the teams that are
playing, or a banner that forms new
patterns for as long as one looks at it
(see Figure 8).

In South Africa, many accommodation
facilities are built sporadically, without
much preceding research about their
location. This is usually the case in
rural areas and is often due to a lack
of funding for such building projects.
The aim of the group here was to show
how a cellular automaton application
could be used to analyse flood
problems in landscapes (see Figure 9).

In many secondary schools in South
Africa, learners are not sufficiently
interested in pursuing scientific or
computer science-related studies,
perhaps due to their perceived
difficulty of these subjects or a lack of
prior exposure.

 4. Two-dimensional
viewing feature.

 5. Three-dimensional viewing
feature.

 3. Division of world into four segments for four CPUs.

I N N O V A T E 5 2 0 1 0110E S S A Y S

 6. Graphics simulation potential.

 7. Biometric authentication demonstration.

 8. Dynamic South African flag simulation (swaying).

 9. Flood plane simulation.

I N N O V A T E 5 2 0 1 0111E S S A Y S

In this context, an intuitive cellular
automaton visualisation can be
used for educational purposes. The
students designed a simulation of a
ripple effect on a liquid surface (see
Figure 10). This simulation allows a
user to choose a place to make a drop
and to see the wave impact it would
have on the liquid surface. Similar
simulations can be designed to show
chemical bonding, chemical reactions
or other phenomena that learners find
hard to understand.

Another simulation is capable of
discovering edges in digital images.
This can be used for feature analysis,
artificial intelligence and biometric
authentication. For this cellular
automaton application, the students
developed a cellular automaton
program that takes a photograph from
a digital camera and converts it into
a cellular automaton grid (world) (see
Figure 11).

Acknowledgements

The student group would like to thank
Morkel Theunissen for teaching them
about design and development of
complex software systems, Rushka
Venter for all her help throughout
the year, Rudi Penzhorn for his
continuous guidance, support and
assistance throughout this project,
Retief Fourie for some additional
interesting ideas, and last, but not
least, Stefan Gruner for his scientific
advice about the theory of cellular
automata.

References

1.	 Gruner, S. 2009. Mobile Agent Systems and
Cellular Automata. Journ. Autonomous Agents
and Multi-Agent Systems, Vol. 20, pp. 198-233,
Springer-Verlag.

2.	 Hey, A. (Ed.). 2002. Feynman and Computation
– Exploring the Limits of Computers. Westview
Press.

 10. Simulation of a ripple effect on a liquid surface.

 11. Edge detection simulation.

The following students were involved
in this project: Andy Yang,
Jamie Hirst, Pedro de Souza,
Herah Khan and Andrew Shaw.
Their software system won two
prizes: the best engineered software
engineering project of the year
at third-year level for software
engineering methodology and the best
overall project of the year for software
product quality.

