
I N N O V A T E 5 2 0 1 0102E S S A Y S

As part of my master’s degree in
information technology (M.IT), I had
to do a research project. My fellow
students and I were given free reins
to choose any topic that interested
us. I found this to be more difficult
than choosing from a predetermined
list of topics, but I was determined to
research something that was relevant
to my daily work.

In his book Outliers – The Story of
Success, Malcolm Gladwell1 states
that it takes about 10 000 hours
of practice to become an expert in
something. Apparently, even Mozart’s
first works were not that great, and
it was only after he reached this
magical number of hours that his true
genius came to light. I work for a small
consulting and development company
in South Africa, which focuses on
integration and custom software
development. I shall call it Company X.

One thing that always bothered me
about Company X was the poor
quality of the software that was
produced. It seemed to me as if
customers were never really satisfied
with the product they received. You
might think that many other factors,
apart from testing, influenced that,
and you would be right. The company
uses the Waterfall Model because
the management has not bought into
the whole idea of agile development
methods. Projects are late, over
budget and of a questionable quality.

This led me and my project supervisor
to believe that we could make a
positive change by assessing the
current testing process, or rather the
lack of a suitable process, and then
recommending an improved software
testing process on the basis of these
findings. My aim was to help Company
X to establish a reasonable testing
process based on well-known “best
practices” and principles from scientific
software engineering literature.

1 Gladwell, M. 2008. Outliers – The Story of Success. Little Brown
and Company.

Small software companies (SSCs)
with between one and 50 employees
face many challenges in their pursuit
of creating quality software. The first
challenge is that they do not believe
that the same processes and methods
used by large software companies
are applicable to them. Possible
reasons for not adopting these
methods are cost, lack of resources,
time and complexity. The second
challenge facing small software
companies is that their processes
and organisational structures are
informal and often lead to a chaotic
environment. This can be attributed
to the fact that small companies must
focus on time-to-market to survive
and often neglect the more resource-
intensive formal processes. The
third challenge is a lack of skills and
experience. Small software companies
can often not afford to employ
experienced software developers. The
fourth challenge is that despite the
many software process improvement
(SPI) programs out there, such as
CMM, CMMI and ISO/IEC15504,
small software companies are either
not aware of them or the software
engineering practices implemented by
these SPI programs are not focused
on the needs and problems facing
small companies.

You might think that these challenges
are faced only by the local software
market, but the literature suggests
otherwise. A study conducted on the
German software industry indicated
that only 5% of all German software
houses had a CMM maturity level of
two or higher2. The other 95% had a
CMM level of one.

My first goal was to get to know
the testing process better. I wanted
to understand how the software
developers felt about testing, what
they knew about software testing, and
how the company perceived software

2 Broy, M. & Rombach, D. 2002. Software Engineering – Wurzeln,
Stand und Perspektiven. Informatik Spektrum, Vol. 25, No.6,
pp. 438-451, Springer Verlag.

Let me begin by setting the

record straight: I am not

a tester and have never

received any systematic

training on testing. Thus, you

might be asking yourself:

how and why has this guy

conducted a project on

software testing? In this

article, I will attempt to

explain how I came about

software testing, and I will

make some interesting

revelations about software

testing in small companies,

not only in South Africa, but

around the world.

Software testing in a small company
by Johan van Zyl

I N N O V A T E 5 2 0 1 0103E S S A Y S

testing. The answers to these
questions were provided by way of a
questionnaire, which formed the basis
for further investigation. Once that
was accomplished, my second goal
was to use the abundance of software
engineering literature available and
provide a basic testing process3.

Concrete problems in Company X

The first step in reaching these goals
was to determine the problem areas
in and around the testing process
at Company X. These problems
are by no means a South African
phenomenon, but can be seen in
many small software companies
around the world.

The first problem was the lack of
software testing knowledge. All the
developers employed by Company X
are university graduates. These
developers were all employed without
industry experience. I found that 75%
of the developers did not know how
to write a unit test. Software testing is
currently not an individual module in
the computer science or informatics
curricula at many universities or
technical colleges. Moreover, the
management of the company did
not provide the developers with an
internal test training programme
or external training opportunities.
This led to projects that served as a
training ground for these developers
to build their skills. In turn, this
resulted in missed deadlines and
software fraught with defects. This is
not a sustainable business model, as
frustrated and unsatisfied customers
will not return for future products.
Furthermore, developers did not use
any testing tools or frameworks such
as Xunit, mainly because they did not
know enough about testing and its
importance in creating software of a
high quality.

3 Van Zyl, J.M. 2010. Software Testing in a Small Company.
Technical Report, University of Pretoria. http://ssfm.cs.up.ac.za/
TR-JvZ-2010.pdf

The last problem identified with regard
to the knowledge and skills of the
software developers was that they
only performed dynamic testing4, that
is, testing that involves executable
code. As is now known, static testing
is just as important to detect defects
early in the software process. This
can be achieved by having regular
code reviews, as well as reviewing the
quality of requirements and design
specifications.

The second part of my questionnaire
was meant to yield some insight into
the perceived commitment of the
company towards testing. I wanted to
determine how serious Company X
was about providing the quality they
promised in their mission statement.
Here I quickly ascertained that the
developers did not know what was
expected of them in terms of testing.
Typically, a company-wide testing
policy will provide the employees
with high-level testing objectives
and principles that can be expanded
further in a testing strategy per
project. The testing strategy typically
outlines the different testing levels,
such as unit, integration, system and
user-acceptance testing, as well as
the activities to be performed at the
different levels. There was also a lack
of test documentation standards or
templates that could be used during
projects, such as testing plans.

Another problem that was identified
was the lack of proper testing
environments. Limited hardware
was available and developers
mainly tested the programs on their
notebooks using virtual machines.

The main issue that this presented
was that the production environment
could never be properly replicated in
a testing environment. This could lead
to nasty surprises when it came to
deployment during the project.

4 ISTQB Standard Glossary of Terms used in Software Testing:
International Software Qualifications. Board Report, v2.0, 2007,
http://www.istqb.org/downloads/glossary-1.1.pdf

The current testing process in
Company X is depicted in Figure 1.
I used the software process
engineering metamodel (SPEM)
notation5. The workflow depicted in
Figure 1 begins with the requirement
specifications. Its work product serves
as input into the implementation of
features. A developer would take a
requirement and implement it. Once it
has been implemented, the developer
would run the code to verify that the
requirement is met. Should a defect
exist in the code, the developer
would attempt to fix the defect and
run the code again. This code-and-
fix approach would continue until all
the features had been implemented
and no apparent defects existed. The
code would be packaged and released
to the customer, who would often
perform the most rigorous testing.

Test process improvement models

The test maturity model integration
(TMMi) and the critical testing
processes (CTP) are test process
improvement models selected as the
baseline for the newly suggested test
process. The TMMi Foundation6, a
non-profit organisation created by test
industry experts, developed the TMMi.
The reason for choosing the TMMi is
that it is fast gaining recognition as an
industry standard, as was set out by
its developers. It is based on the CMMi
and the test maturity model (TMM).
The CTP was developed by Rex
Black7 and was born out of 20 years’
experience in the software testing
industry. The CTP model contains
12 so-called “critical processes”
that can be applied in any software
organisation. The processes are
presented as “lightweight checklists”
and not as bureaucratic regulations.

5 SPEM: Software Process Engineering Metamodel, volume 2;
Object Management Group, 2008, http://www.omg.org/cgi-bin/
doc?formal/08-04-01.pdf
6 TMMi Foundation: Test Maturity Model Integration (TMMi),
Version 2, http://www.tmmifoundation.org/html/tmmiref.html
7 Black, R. 2004. Critical testing processes – plan, prepare,
perform, perfect. Addison Wesley Longman Publ.

I N N O V A T E 5 2 0 1 0104E S S A Y S

Critical testing processes

The CTP comprises four phases. The
first phase is concerned with planning
the test effort. This includes a quality
risk analysis, estimating the test effort
and developing a plan for the test
project. The deliverable of this phase
is a test plan. The Prepare Phase
commences upon completion of the
Plan Phase. This phase includes the
building of a test team, which either

 1. The current testing process in Company X.

means employing new testers or
training existing employees. According
to Black, “only a team composed
of qualified test professionals can
succeed with the critical testing
processes.”

As you may have noticed, Company
X does not employ a single dedicated
tester. All test-related activities are
performed by the software developers.
The Prepare Phase is also concerned

with building a test system that
includes the creation of test suites to
cover the risks identified in the Plan
Phase, selecting the appropriate
testing techniques based on the
test conditions, and creating the
test environment. The third phase of
the CTP is the Perform Phase. The
purpose of this phase is to execute the
test cases developed and to record the
test results. The final phase of the CTP
is the Perfect Phase. The purpose of
this phase is to adapt and improve the
test process. This phase includes the
bug reporting process, communication
of the test results to relevant
stakeholders, and the refinement of the
applicable test process itself.

Test maturity model integration

The TMMi is a “heavyweight” model
(compared to the more agile or
“lightweight” CTP in which processes
can be implemented as needed). It is
structured more strongly and is very
comprehensive. It follows the same
staged approach as its CMMi uncle.

There are five levels of maturity, each
consisting of different process areas.
These process areas are made up of
specific and generic goals that consist
of specific and generic practices. The
practices in each process area must
be implemented before the maturity
at that level can be attained. I only
focused on TMMi levels two and
three, as it can take up to two years
to reach a level two maturity from the
lowest level one.

These two levels include process
areas such as test planning, test
policy and strategy, test monitoring
and control, test design and
execution, and test organisation.
Clear guidelines are provided on
what is expected in each process
area. Company X is currently at a
TMMi level one. At this level, the test
process is chaotic and undefined.
There is no difference between testing
and debugging.

 2. Rex Black’s critical testing processes.

Understand the testing
effort

•	 Discover the context of
testing

•	 Analyse the quality
risks

•	 Estimate the testing
•	 Plan the testing

Guide adaptation and
improvement

•	 Report any bugs
•	 Report any test results
•	 Manage changes

Do the testing and gather
the results

•	 Obtain a test release
•	 Run and track the

tests

Assemble the people and
tests

•	 Build test team
•	 Design and implement

a test systemPlan

Perfect

Prepare

Perform

I N N O V A T E 5 2 0 1 0105E S S A Y S

Testing is mostly performed in an
ad hoc manner after coding has been
completed. I was shocked to see
the similarities between the TMMi’s
description of a level one company and
Company X. My goal was to elevate it
to at least a level two maturity.

Based on the suggestions found in the
literature and fruitful discussions with
test industry experts, I devised a basic
test process for Company X. This
high-level overview of my suggestions
improved the test process.

Improved test process

As my objective was to improve
only the test process and not
the entire software development
process, I opted to incorporate the
V-model8 into the new test process
for Company X. The V-model of
software testing suits the Waterfall
Model of software development and
can be integrated without disrupting
the core of the workflow of the entire
development process. The V-model
also allows for the early integration
of the test activities into the software
development process. The likeness of
the new test process for Company X
to the abstract V-model can be seen
in Figure 4.

This diagram is also shown in
SPEM notation and deserves further
explanation. The icons that resemble
envelopes represent the deliverables
at different stages of the process.
The icon that resembles a paper
document at the top left is the test
strategy, which serves as input to
the test process. The left leg of the V
consists of the software development
phases, coupled with the process
areas from the TMMi. It is clear that
the Test Planning Phase follows the
Requirement Phase and that a master
test plan is produced as a deliverable
of this phase.

8 Forsberg, K. & Mooz, H. 1998. System Engineering for
Faster, Cheaper, Better. Technical Report, Center of Systems
Management. Available online via Citeseer and Google Docs.

 3. Rex Black’s TMMi maturity levels.

Test design is performed after the
Architecture Phase. The whole
process is continuously monitored
and controlled, as can be seen from
the icon in the centre of the process
model. This is the monitoring and
control process area adapted from the
TMMi recommendations. The aim of
this process area is to measure the
test process with the use of metrics
such as code coverage or the number
of open defects. The reviewing
of documentation and program
code also forms part of this phase
and helps to ensure that quality is
achieved at the outset of the project.

The test execution phases (also
adapted from TMMi) follow the
Implementation Phase of the software
development process. This includes
the normal testing phases from the
V-model (unit, integration, system
and user-acceptance testing). Each
phase is concluded with the creation
of a test log to decide whether the
entry and exit criteria of the respective
levels have been met, and to track the
progress of the entire test process.

The process is concluded with the
test reporting and closure process
area, where a test summary report is
distributed to all stakeholders, the test
environment is backed up for possible
future use, and a test project “post-
mortem” is conducted to determine
where the process diverged from the
test plan and how to improve the test
process during the next project.

Looking back at this research project,
I would have liked to have had a more
agile process. This was not possible
due to the current Waterfall process
being followed in Company X. I can
happily report that an agile approach
is now being implemented, which will
emphasise test-driven development
(TDD). However, a recent paper9
published on the benefits of TDD
reported some remarkable results.
It was found that TDD improved
the internal code quality in some
cases, but increased unwanted code
complexity in others.

9 Siniaalto, M. & Abrahamsson, P. (2008). Does Test-Driven
Development improve the Program Code? Alarming Results from
a Comparative Case Study. Lecture Notes in Computer Science,
Vol. 5082, pp. 143-156, Springer Verlag.

(5) Optimisation
Defect Prevention
Test Process Optimisation
Quality control

(4) Management and
Measurement
Test Measurement
Software Quality Evaluation
Advanced Peer Reviews

(3) Defined
Test Organisation
Test Training Programme
Test Life Cycle and Integration
Non-Functional Testing
Peer Reviews

(2) Managed
Test Policy and Strategy
Test Planning
Test Monitoring and Control
Test Design and Execution
Test Environment

(1) Initial

I N N O V A T E 5 2 0 1 0106E S S A Y S

 4. Improved test process for Company X.

The benefits of TDD were not as self-
evident as previously expected and
the ultimate verdict is still out.
I believe that there must be stronger
collaboration between industry and
tertiary institutions to deliver the right
skills needed to the local IT market.
It came as a surprise to find that
small companies play a big role in the
global software economy, but many of
them suffer from problems similar to
those experienced by Company X.

Acknowledgements

This contribution is a slightly modified
reprint of an article that appeared
in the Test Focus, edited by Wayne
Mallinson. Written permission was
kindly given by the magazine, which
is gratefully acknowledged.

I would also like to thank the people
from the Special Interest Group in
Software Testing (SIGiST) of the
Computer Society of South Africa

(CSSA) and the Johannesburg Centre
for Software Engineering (JCSE) for
the opportunity to present my findings
at one of their public seminars in
Johannesburg.A further thank you
to my supervisor at the University of
Pretoria, Stefan Gruner, for his support
during my M.IT dissertation project.

Johan van Zyl is a software
development manager at a small
company in Pretoria. He loves the
mental challenge that programming
holds and dreams to be a software
architect when he grows up. He
relaxes by riding mountain bikes over
weekends and has a rather expensive
fixation with collecting books on
software engineering.
Last, but not least, he is enrolled for
PhD studies in computer science
(software engineering) at the
University of Pretoria.

