
I N N O V A T E n o . 3 2 0 0 948E S S A Y S

Role model for young researchers

Markus Roggenbach visited the UP’s Computer Science Department

In the framework of a prestigious

bi-national (British/South African)

research cooperation co-funded

by the British Royal-Society

and the South African National

Research Foundation (NRF), Markus

Roggenbach followed an invitation

by Derrick Kourie and Stefan Gruner

and visited UP’s Computer Science

Department during two weeks in July

2007. This article first introduces

Markus Roggenbach personally

as an inspiring example and role

model for the young generation of

novice researchers. Thereafter, some

background information about the

innovative research in the context

of this bi-national cooperation is

described.

Markus Roggenbach is both a well-
known scientist as well as a formidable
artist, and the path which he would
eventually choose was not easy to be
foreseen. Already during his school
time in Wolfsburg (Germany) he won
a prize in the national music youth
competition “Jugend musiziert”: his
favourite instrument is the oboe, but he
also plays the piano very well. After his
Matric (in Germany: “Abitur”), Markus
studied Music at the renowned Higher
Institute for Music in Detmold. After
a while, a difficult decision was to be
made: to become – or not to become
– a professional musician: Music or
Informatics? Markus decided to start
with Informatics and Mathematics at the
Technical University of Braunschweig,
and continued his studies of Informatics
at the University of Karlsruhe, where
he also received his MSc-Diploma
in Infomatics, with an MSc thesis on
Parallel Computation and Systolic
Arrays. Thereafter he moved from the
University of Karlsruhe to the University
of Mannheim, where he achieved his
Doctorate on Abstract Characterizations
of Bi-Simulation. From 1998 to 2003,
Markus worked as a Post-Doc Research
Fellow at the Faculty of Informatics of
the University of Bremen, where his
focus of research was Process Algebras
and Mathematical Specifications of
Software Systems. In the year 2003
he moved from Germany to Wales
(GB), where he teaches mainly Formal

Methods and Formal Semantics, but
also Algorithms and Data Structures, at
the University of Wales in Swansea. As
a passionate and dedicated teacher in
higher education, one of Markus’ main
concerns is the lack of entry-skills and
intellectual maturity, thus a general
“non-study-ability” amongst many
students in the post-1970s mass-
universities. In contrast to other recently
emerging opinions, he is also a strong
believer in the “mathematicalness” of
Informatics (respectively the Computer
Sciences). Markus has appeared on
numerous international conferences, is
a programme committee member to
some of them, and published articles
in scientific journals. He currently
supervises four doctoral students: three
of them are full-time (internal) students,
whereas one of them is a part-time
(external) student. Moreover, Markus
maintains standing cooperations with
the University of Bremen on Formal
Semantics, with Tsukuba in Japan on
Automated Theorem Proving, with the
Humboldt-University of Berlin on Formal
Methods of Software Testing, and now
also with the University of Pretoria
on CSP specifications and correctness
proofs. He presented a course in South
Africa in 2000, when he presented a
course on Formal Methods and Algebraic
Specifications as an Invited Lecturer at
the University of Cape Town. Besides
his scientific activities, Markus is still
an active amateur musician, playing his
instrument in various local trios, quartets
and classical chamber orchestras, of
which also some recordings exist.

Background of the project cooperation

Parallel and Distributed Algorithms
are very useful tools because they can
exploit the combined computational
power of a network or grid of processors,
rather than the single processor of
classical von-Neumann computer
architectures. On the other hand,
parallel and distributed algorithms are
intrinsically difficult to design and to
test, because the “path” or “trace” of
a parallel computation, even based on
the same set of input data, can vary
from time to time and is not easy to
predict. In such a setting the danger
of deadlock is looming, which is a

 Markus Roggenbach in Pretoria:
July 2007

I N N O V A T E n o . 3 2 0 0 949E S S A Y S

situation in which no processor can
make any computational progress any
more because of waiting for data from
other processors which are also stuck.
This is the well-known circular-wait
situation, also studied in the field of
operating systems. Already in 1987,
Roscoe and Dathi [1] have researched
the circumstances under which a
distributed system can be regarded as
deadlock-free, in other words: what must
be the case such that we can necessarily
conclude that the above-mentioned
circular-wait situation is impossible?
According to [1], a progress-function
ƒ(T,P) for traces T and processors P
must be discovered such that (basically,
in a somewhat simplified explanation):
for each two processors Pi and Pj and
for each of their traces Ti and Tj the
following condition holds: whenever
there is an un-granted communication
request from Pi to Pj, then ƒ(Ti,Pi) >
ƒ(Tj,Pj). If such a progress-function can
be found, then the distributed algorithm
is guaranteed to be deadlock-free. The
problem in this context is two-fold:
(a) such a function, which differs from
algorithm to algorithm, is hard to be
discovered for a particular algorithm
under investigation, and (b) when it is
discovered then its discovery is mostly
based on the exploration of only a small
numbers of sample processors within
the distributed computation network
– not the entire network as a whole.
Therefore the question arises: whenever
we have “guessed” (based on a small
number of observation examples) a
candidate function ƒ, how can we be
sure that this ƒ is actually valid for the
entire network and not only for the
small number of example processors
which we have observed? This is exactly
the point where the availability of
automated theorem proving cannot be
valued highly enough, and this is also
the context of the above-mentioned
bi-national (in fact even multi-national)
project cooperation. Based on the
general theorem prover tool “Isabelle”
[2], Isobe has programmed a “plug-in”
which is suited for proofs about parallel
and distributed algorithms described
in the network description language
CSP [3]. With this tool, for example, the
deadlock-freeness of a particular systolic
array described by Kung for the purpose

 1. Sketch of a systolic array for matrix multiplication

of matrix multiplication [4] was formally
(i.e. automatically) proven for the very
first time two years ago [5]. A systolic
array is a highly symmetric (usually
rectangular) grid of fully synchronised
parallel-processing in which the data
are “pumped” through the network in
“wave-fronts” following the “heart-beat”
of a global clock.

This innovation in automated deadlock
analysis (which could only be dreamt
about 20 years ago when Roscoe and
Dathi first published their mathematical
methodology) was made possible by the
advances in both software engineering
and computer hardware development.
The above-mentioned project
cooperation aims at widening and
deepening our knowledge in this domain
by proving the deadlock-freeness of a
larger collection of relevant parallel or
distributed algorithms and thereby also
refining the “tricks” and techniques of
the tool-supported proof-methodology
itself.

In this most recent visit to South
Africa (Cape Town, November 2008),
Markus presented his work as an invited
keynote speaker at the prestigious IEEE
conference on Software Engineering and
Formal Methods [6].

Prospective MSc/PhD students, who are
ambitious enough for the challenges of
this truly difficult subject, are encouraged
to contact Dr Stefan Gruner
(sg@cs.up.ac.za) at the University of
Pretoria for further information.

Literature References:

[1] A. Roscoe and N. Dathi: The Pursuit of Deadlock Freedom.
Information and Computation Vol.75, No.3, pp.289-327,
1987.

[2] T. Nipkow, L. Paulon and M. Wenzel: Isabelle/HOL. Lecture
Notes in Computer Science Vol.2283, Springer-Verlag,
2002.

[3] Y. Isobe and M. Roggenbach: A Generic Theorem Prover
of CSP Refinement. Proceedings TACAS’05, Lecture Notes
in Computer Science Vol.3440, pp.108-123, Springer-
Verlag, 2005.

[4] H. Kung: The Structure of Parallel Algorithms. Advances in
Computers, Academic Press, 1980.

[5] Y. Isobe, M. Roggenbach and S. Gruner: Extending
CSP-Prover by Deadlock-Analysis towards the Verification
of Systolic Arrays. Proceedings FOSE’05: 12th Japanese
Workshop on the Foundations of Software Engineering,
2005.

[6] M. Roggenbach: Tools for CSP. Invited keynote lecture.
In A. Cerone and S. Gruner (eds.): 6th IEEE International
Conference on Software Engineering and Formal Methods,
Cape Town, Nov. 2008, IEEE Computer Society Press.

