Foundations of the rate theory of radiation effects
with account of non-linear excitations in crystals

V.l. Dubinko
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Driving forces of microstructure evolution

Early Rate Theory of the radiation-induced void swelling
Experimental verification of dislocation bias: unsolved puzzle!
Radiation-induced formation of Schottky defects:

MD simulations and Modified Rate Theory

Non-linear effects: Discrete Breathers and Quodons: definition and
discovery: insulators and metals

Applications in physics of radiation effects:

Modified Rate Theory of swelling

Radiation-induced “annealing” of voids

Swelling saturation and ordering of voids



Radiation-induced void swelling

1.2 MeV Cr 3 — Ni (600°C, ~25 dpa) DOSE RATE: 7x10~° dpals




Driving forces of microstructure evolution

Thermal treatment
(only Schottky defects)

— Edge
DCv \ dislocation

SN

27/(() th
Dc!" expd =2= Dc
° p{kTR} °
Cy, CEXP| — T - Arrhenius’ law — how universal is it?



Driving forces of microstructure evolution
under irradiation:
Frenkel and Schottky defect production
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Rate theory of crystal defects under irradiation
(1) Schottky + Frenkel defects

Rate equations:
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Steady-state conditions:
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Bias factor of a straight edge dislocation (Ham, 1959):
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STEADY-STATE DOSE (dpa)

Irradiation dose required to reach steady-state
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Rate theory of crystal defects under irradiation
(2) Absorption dislocation bias factor and swelling rate
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ABSORPTION BIAS (%)
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Experimental evaluation of dislocation bias
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Absorption bias calculated using the experimental data (c) as a
function of temperature (a) and the void number density (b)



SWELLING RATE (%/dpa)

Evaluation of swelling rate in early FP3DM and comparison
with experimental data Makin et al. JNM (1980 -1985)
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Swelling rate calculated as a function of temperature and the void
number density. Experimental data for austenitic steel (a) and for a
pure Fe-Ni-Cr alloy (b), where x and o represent residual gas and 10
appm pre-injected helium



Radiation-induced formation of Schottky defects
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Schematic representation of point defect formation near a void. The size
of void corresponds to about 300 atomic volumes. PKA ranges of 2 - 10
interatomic distances from the void surface.



MD simulation of point defects production in the vicinity of extended defects

Schematic representation of point defect

formation near a void.
N. P. Lazarev, V. |. Dubinko,

Radiat. Eff. Def. Solids 158 (2003) 803
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[lustration of the final stages of collision cascade
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In contrast to the Frenkel pair production in the bulk, the collision events in the vicinity of extended
defects results in a biased formation of vacancies due to the lower energy barrier involved



DISSOLUTION OF VOIDS BY SUBTHRESHOLD IRRADIATION

.
< I

YVOID GEOWTH RATE, now'hour

-1 | ]

116 118 110
ELECTRON ENERGY. &V
— Al
=== Cn
(<) () (e)

Different stages of the void dissolution. The atoms are shown, which coordination
numbers are less than 12. (a) The void 1nitial size iz 3120; (b) After 37 ns of the
simulation and 7632 collision cascades activated:; (c) Beginning of the stacking fault
tetrahedron |SFT) formation after 72 ps. (d) Final state of the SFT development; (g]

Calculated void growth rate vs. electron beam energy at 2009 C, j: =10'% em3g1, L =18



Radiation-induced solubility limit
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VOID SWELLING, %

Swelling saturation with increasing irradiation dose
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Why Non-linear effects ?

Focusons are unstable against thermal motion because they depend on
the alignment of atoms. Typically, at elevated temperatures, the focuson
range is limited to several unit cells and their lifetime is measured in
picoseconds. However, there exists much more powerful, essentially non-
linear, lattice excitations having large lifetimes and huge propagation
distances, which are called discreet breathers (DBs) or intrinsic localized
modes (ILMs) and quodons



Frenkel and Schottky defect production
by Crowdions and Quodons
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Nonlinear coupled oscillators

V=X V(X )+C WX, X,.,)

 Exact, periodic and localized solution

Phonons
e Frequency band uuzph=w20+4 Csin2q/2
e Non localized states

®=0
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R. S. MacKay; S. Aubry, Proof of existence of
breathers for time-reversible or Hamiltonian
networks of weakly coupled oscillators,
Nonlinearity 7, 1623 (1994)
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Existence of breathers (1994) |
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Fiz. 5. Time dependence, in picoseconds. of the lattice displacement. w,, in A, and
momenta, . in ﬂ-i’-ﬁ,-‘rps. of site . The syvstem parameters are as in Fig. 1. The
initial momenta are defined as p,(0) = 5.2T526 M (1w, — 2, 1)






Discrete breathers can move and transport

coherently energy through the lattice:

Interaction of moving discrete breathers with

vacancies, J Cuevas, 1 JFR Archilla, B S"anchez-Rey, FR Romero, 2005

(a) C=0.30, b=1, k=0.1425 B} C=0.30, b=1, A=01052
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Energy density plot for the interaction moving breather—vacancy.
The particle to the right of the vacancy is located at n = 0. In (a),
the moving breather is reflected and the vacancy moves
backwards, in (b) the breather is transmitted and the vacancy
moves backwards.



Uranium Atoms Don't Share the Vibe
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Phys. Rev. Lett. 96, 125501

(issue of 31 March 2006)

C.P. Opeil, S.J./Los Alamos National Lab

Hot material. Experiments on this uranium crystal at high
temperatures show that a few atoms can vibrate for a long time without
disturbing neighboring atoms. The effect has never been conclusively
seen in a three-dimensional crystal.

All crystals display some nonlinearity at high enough temperatures, but
DBs had only shown up clearly in one- or two-dimensional systems.
Uranium crystals seem to contain many DBs if heated past 450 K.
"These sort of things should exist all over the place in materials; it's just
really hard to see them," says Michael Manley of Los Alamos National
Laboratory .


http://link.aps.org/doi/10.1103/PhysRevLett.96.125501
http://focus.aps.org/files/focus/v17/st11/big-1.jpg

Available online at www _sciencedirect.com
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Impact of intrinsic localized modes of atomic motion
on materials properties

M_.E. Manley *

Lawrence Livermore National Laborarory, Livermore, CA 94551, USA

Recerved 1 October 2009; accepted 18 January 2010
Available online 13 February 2010
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Fig. |. Eigenvectors of the oscillatory motion, “ac”, and static distortion, “dc”, of an ILM simulated wsing model potentials for Nal, after Ref. [13]. The
small atoms are Na and the large atoms are I. The ILM oscillations, centered at Na, are polarized along the [1 1 1] direction. The local de distortions
include a contraction along the direction such that the mode displaces atoms in osallatory motion, and an expansion in the orthogonal direction.
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Fig. 2. Thermal expansion of Nal as measured from the dilation of a
single crystal along the [1 00] direction, after Ref. [14].
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Fig. 3. Thermal expansion of «-1J. (a) Per cent length change along the three principle axes of a single crystal measured by Lloyd [15]. (b) Per cent change
in volume determined from the single crystal data of Lloyd [15] (solid black line in top panel), and determined from X-my diffraction determined lattice
spacing by Bridge et al. [17] (blue line top panel) and Wilkinson [18]({ blue line bottom panel). The ILM activation temperature is indicated by the vertical
red line.



ME. Manley! Acta Maverialia 58 (2010) 2926-2935 2019
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Fig. 4. Simplified illustration of how ILMs may manifest as an inhomogeneous distribution of both lattice vibrational energy and anharmonic thermal
expansicon. The focusing of the lattice dynamic energy 15 accompanied by a concomitant focusing of the thermal expansion effect in localized egions.



Symmetry-breaking dynamical pattern
and localization observed in the
equilibrium vibrational spectrum ot Nal

M. E. Manley', D. L. Abernathy?, N. |. Agladze® & A. J. Sievers®

"Lawrence Livermore National Laboratory, Livermore, California 94551, USA, *Oak Ridge National Laboratary, Oak Ridge,
Tennessee 3783 1, USA, *Llaboratory of Alomic and Solid State Physics, Cornell University, Ithaca, Mew York 14853-2501, USA.

Intrinsic localized modes (ILMs) - also known as discrete breathers — are localized excitations that form
without structural defects in discrete nonlinear lattices. For crystals in thermal equilibrium ILMs were
proposed to form randomly, an idea used to interpret temperature activated signatures of ILMs in a-U and
Nal. Here, however, we report neutron scattering measurements of lattice vibrations in Nal that provide
evidence of an underlying organization: (i) with small temperature changes ILMs move as a unit
back-and-forth between [111] and [011] orientations, and (ii) when [011] ILMs lock in at 636 K the
transverse optic (TO) mode splits into three modes with symmetry-breaking dynamical structure
resembling that of a superlattice, but there are no superlattice Bragg reflections and the pattern itself has
crystal momentum. We conclude that this dynamical pattern is not derived from the rearrangement of
atoms but from a coherent arrangement of ILMs decorating the crystal lattice in equilibrium.



SCIENTIFIC® o 77—
R E P? RT S T4y |' L TR | N\ 10
4 N Vo e I _ o T N
t * 1 20 "-_._.""-..*.."n 1
=550 K 1 _
om u"‘: g T2 L. .
= :1‘ i =
E I Ttk ;I-Ft:l_ll""‘:* ] £
g w8
Received g :.: p— - E
20 January 2011 o
oot Sy 11
s Ay 7L
21 March 2011 i *":‘%mﬁ\t
:_.._.51_.:p; III:I:l:'- | i
Published tigax ¥ -
.|d-JUﬁEZ'D.|.| "'*I "9*?‘"”'.”-‘ 1 1
E A 40 92 44 8 & B 10 12 14 1A
Enengy {mei) Enargy imeh)

Figure 1 | Lattice excitation spectra derived from a curved section of
momentum-energy (Q-E) space as a function of temperature. The Q space
sampled in these spectra changes with E. The curved dashed-line section in the pictures
above the data sets shows where the detector banks are projected in the Nal reciprocal
lattice for energies between 9 meV and 11 meV (where the ILM feature formss). The
grey outlined boxes with Q labels indicate the volume of Q



Breather effect: peiodic in time modulation of the
potential barrier (1)
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Quodon definition

As the incident focuson energy is dispersed but the available kinetic
energy still far exceeds that of phonons, atoms experience large
displacements from their equilibrium positions. Propagation of the
corresponding lattice vibrations are governed by nonlinear forces. This
may result in formation of vibrational particle-like solitons, called
quodons. According to molecular dynamic simulations, quodons are
mobile, highly anharmonic longitudinal vibrations that are sharply
localized in longitudinal direction and practically across one atomic
distance in the transverse direction. The main difference between
focusons and quodons is that the latter are stable against thermal

motion.




Quodons in mica moscovite F.M. Russell
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Mike Russell (center), Juan Archilla (right) and Vladimir
Dubinko (left) at Mike’s lab (Abingdon, UK, March 2011).




F.M. Russell, J.C. Eilbeck, Evidence for moving breathers in a layered crystal insulator at 300 K,

Europhysics Letters 78, 10004, 2007.

A~ Sputtering
‘ — mica muscovita
’ ' ‘ ‘ ‘ Expulsion de un ‘\
‘ Stomo particula alfa
| |
1
‘ Trayectories along lattice directions within the K* layer
B Evidence for moving breathers in a layered crystal insulator at 300K
4 i \ FM Russell and JC Eilbeck, Europhysics Letters 78, 10004, 2007.

Ejection of atoms at a crystal surface caused by
energetic breathers which have travelled more than
107 wunit cells in atomic chain directions. The
breathers were created by bombardment of a crystal
face with heavy ions. This effect was observed at
300K in the layered crystal muscovite, which has
linear chains of atoms for which the surrounding
lattice has C2 symmetry.




Anomalous lon Accelerated Bulk Diffusion of Interstitial Nitrogen
Gintautas Abrasonis™ and Wolfhard Mo’ller
(Received 19 August 2005; published 13 February 20006)

Interstitial N diffusion under low energy (700 e€V) Ar bombardment at 673 K
in ion beam nitrided austenitic stainless steel is investigated. Ar ion
bombardment increases the N mobility in depths far beyond the ion
penetration depth (microns), resulting in an increased broadening of the N
depth profile as a function of Ar flux. This effect cannot be explained by any
established mechanism of radiation-enhanced diffusion. An explanation
based on qudon-enhanced mobility is proposed

N penetration depth as a function

) of surface irradiating ion flux / for
E‘Z a=0.02 fixed ion fluence and different
< fluxes

o= 0.005

1 2 3 4 - 6 7 B 9 10
Ion flux (a. u.)



Long range effect of ion irradiation on diffusion
Li Zhang, Guangze Tang, Xinxin Ma, Physics Letters A 374 (2010) 2137-2139

It was observed that low energy

(500 eV) Ar ion irradiation significantly
increased the substitutional Ni diffusion
in quasi-single crystal Cu

0.5-1.5 mm away from the radiated
surface.

The shorter the diffusion couple away
from the radiated surface, the faster the
Ni diffuses. It is suggested this effect is
the result of an

effective energy migration decrease

by ion radiation induced DBs.
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Quodon effect: random modulation
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VACANCY CONCENTRATION
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EFFECTIVE BIAS (%)
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Evaluation of effective bias based on
experimental data Makin et al. JNM (1980 -1985)
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SWELLING RATE (%/dpa)

Evaluation of swelling rate in new FP3DM and comparison
with experimental data Makin et al. JNM (1980 -1985)
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HISTORY

30 years ago

“For many years already we study the void swelling in reactor
materials, but to solve the problem one should know how the
void shrink rather than grow...”

llya Naskidashvilly, Winter School, Bakuriani, Georgia1980

29 years later...

!



Radiation-induced “annealing” of voids under 30 keV proton irradiation
(Dubinko, Guglya et al, 2009)
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Theory vs. experimental data
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Thin foils, 30 keV H+ Lee=oT -

SWELLING RATE (%/dpa)

TEMPERATURE (K)

-==- Early FP3DM, dg=100-120 nm
= FP3DM+EB, dg=110 nm
----- FP3DM+EB, dg=120 nm
----- FP3DM+EB, dg=100 nm

Temperature dependence of swelling rate in nickel foils irradiated with 30 keV protons vs.
experimental data:

K =6x10" dpals, R,=10nm, N, =10%m>, p, =2x10“m? .13 =5x10°h, AE, =05 eV;



Wolfer Response

| took a close look at the manuscript by Dubinko et al, and | am in full
agreement with their assessment of the

production bias and its failure to explain actual experimental results. We
also had reached this conclusion and stated our objections in Ref.5 quoted
by Dubinko.

What impressed me the most, however, is the

new mechanism of rediation-enhanced vacancy emission from dislocations,
voids and grain boundaries. The theoretical treatment of this new effect

is very sound, although to some degree approximative. The inclusion of it
into the classical rate theory is handled correctly, and applying it to

the experiments discussed in the paper provides then compelling validation
of the new rate theory. | recommend that the paper be published. However,
| did not take enough time to look for typos or list cases of awkward
English; this, | assume, will be taken care of by the editors. But | am

willing to serve as a referee.

With best regards,

Bill Wolfer



Irradiation of nickel with chromium ions

V.l. Dubinko, A.G. Guglya, E. Melnichenko, R. Vasilenko, EMRS 2008,
Journal of Nuclear Materials, 385 (2009) 228-230

Cr 3* — Ni (600°C, ~25 dpa) Cr 3+ — Ni (600°C, ~25 dpa) + Cr 3* —
Ni (525°C, ~25 dpa)

Cr3* — Ni (600°C, ~25 dpa) + Cr 3* —
ION FLUENCE 102" ions/m? Ni (450°C, ~25 dpa)
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SWELLING RATE (%/dpa)

Theory vs. experimental data

1 I I I I ds ki Kk

Bukl specimens, 1.2 MeV Cr+ — = DE —de
171 2 tot
dt k:
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Temperature dependence of swelling rate in nickel bulk samples irradiated with 1.2 MeV Cr ions
vs. experimental data: K =7x10"dpa/s, R,=20 nm, N,=10"m>, p,=2x10"m>.

l; =5x10°b, AE,=0.5 eV — EB parameters
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Swelling saturation and void ordering
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Dissolution of a void in the
Micrographs of bcc void lattices following ion  due to the absorption of quodons coming from
irradiation in molybdenum, (111) projection larger distances as compared to “regular’ voids
[J.H. Evans, in Patterns, Defects and Materials [V. Dubinko, Nuclear Inst. and Methods in

Instabilities, 1990]. Physics Research, 2009]



VLP/R RATIO

Void lattice parameters

20 ' ' Dependence of the VLP/R
ratio on the quodon range:
The markers show the
experimentally observed range
of VLP/R ratio values in
different materials
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Long range effects in metals

Materials modification by low-energy ion irradiation
|. V. Tereshko, V. I. Khodyrev, E. A. Lipsky, A. V. Goncharenya and A. M. Tereshko

Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with
Materials and Atoms, 127-128 (1997) 861-864

The modification of materials subjected to the bombardment with low-energy
ilons was investigated. The increase of dislocation density in metal samples
was observed up to a depth of 10 mm from the irradiated surface. It is
described as a “long-range effect”. The low-energy ion irradiation leads to
the change of physical and mechanical properties of irradiated materials.
This is, actually, a bulk modification. To explain this modification of materials
the authors suggest a hypothesis based on the idea of nonlinear oscillations
excitations in crystals which lead to active self-organizing processes in the
lon subsystem.


http://www.sciencedirect.com/science/journal/0168583X
http://www.sciencedirect.com/science/journal/0168583X

Long range effects in metals

On depth of the zone of modification of properties (hardening) of materials

under irradiation at t < 100 °c with low-energy plasma of the glow descharge
Y.V. Kunchenko, V.V. Kunchenko, G.N. Kartmazov
NSC Kharkov Institute of Physics and Technology, Kharkov, Ukraine
@I UMM PSE, 2009, 1. 7, Ne 1-2, vol. 7, No. 1-2 (in Russian)

The macroscopical scale the modified (strengthened) zone is established on
the basis of results of measurements of distribution of microhardness on
depth (up to 2,5 mm) initial deformed, annealed (600 °C, 2,5 hours) and
irradiated with low energy plasma of the glow descharge at T< 100°C samples
alpha-Fe, and two-fold increase of relative erosive stability (resistance) of the
irradiated samples of steel HVG at cavitation influence of water at the back
side of a sample, which thickness was 4 mm. Features of changes of a
microstructure of the irradiated coarse-grained samples of alpha-Fe and the
fact of hardening of the back (not irradiated) surface of a sample of steel
confirm the wave nature of the mechanism of long-range action, transport of
energy of an elastic wave at macrodistances from the irradiated surface.



On depth of the zone of modification of properties (hardening) of materials

under irradiation at t < 100 °c with low-energy plasma of the glow descharge
Y.V. Kunchenko, V.V. Kunchenko, G.N. Kartmazov
NSC Kharkov Institute of Physics and Technology, Kharkov, Ukraine

L i

Microstructure of alpha-Fe in the annealed state before irradiation (left) and after irradiation
with low energy plasma of the glow discharge (right). Formation of dense dislocation networks
around grain boundaries can be seen far away from the irradiated surface



Sub-threshold electron irradiation
Salford, UK, 2011




SUMMARY

» The rate theory modified with account of quodon-induced reactions has
been applied for description of the radiation-induced growth and
annealing of voids.

*The best agreement with experiment shows the model that takes into
account all three constituents of swelling, based on the absorption,
emission and production biases.

The quodon propagation range in different metals deduced from the
comparison between the theory and experiment are in the micron range,
which is consistent with an typical grain size.

» In order to forecast the behavior of nuclear materials one has to know
the generation rate of quodons and their propagation range in different
crystal structures as the functions of impurity atom concentration and
type. The latter factor seems to be of a primary technological importance
since it offers a new insight on design of radiation-resistant materials.
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Outstanding problem:
How to observe quodons in conventional MD ?
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The energy relaxation simulations in Cuat T = 1 K,
Lazarev, Dubinko, 2003



Irradation creep
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Irradiation creep due to radiation and stress-
induced difference in vacancy emission from
dislocations (RSIDE)

Sub-threshold irradiation
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Comparison between the SIPA and SIDE
creep rates
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ELECTRON-PLASTIC EFFECT



Experimental investigation of the electron-plastic effect under electron irradiation
Kushnir, Lebedev et al, NSC KIPT, 2008
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Experimental investigation of the electron-plastic effect under electron irradiation
Dubinko, Lebedev, Kushnir et al, NSC KIPT, 2008

c-107,
ITa |2 Deformation hardening of aluminum
samples (a) without irradiation (1) and
’ under irradiation with electrons (2);

(b) Temperature evolution under irradiation
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Experimental investigation of the electron-plastic effect
under electric current

EPE dependence on the
electric current density in Cu
(99.5%) at 300 K and the
strain rate is 2.7x104 s
[Lebedev et al, Kharkov
National University, 2008]

3G, Kre/Mm?

The linear dependence can
not be explained by Joule
heating of the sample




String model of the dislocation segment
oscillations

A.l. Landau, Yu.l. Gofman, 1974
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f(f) Arbitrary force acting on dislocation (usually — due to thermal
vibration of atoms)



Three-temperature model of the

radiation-induced energy spikes
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Radiation-induced “energy” peaks in metals:
electrons vs. dislocations
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Summary

Mechanical properties of materials under irradiation are different
from those under post-irradiation tests, which should be taken into
account in forecasting the lifetime of nuclear power plants.

Nonequilibrium fluctuations of energy states of the atoms
surrounding crystal defects arise as a result of their interaction with
radiation-induced DBs and quodons. These fluctuations result in
radiation-induced recovery processes such as the void shrinkage
and ordering, saturation and even reduction of swelling, radiation-
induced softening. So the quodon mechanics should be taken into
account in modeling of material response to irradiation.

THANK YOU FOR YOUR ATTENTION!
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