

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

An Introduction to Artificial Neural Networks

Matthew Smith MSc Actuarial Science

Supervisors:

Dr C Beyers Dr P de Villiers

Two components to my research

Intrigue into the human mind

Two components to my research

Actuarial Control Cycle

6

Specify the problem

Road Map

- 1. What are ANNs?
- 2. Where do they come from?
- 3. What do they look like?
- 4. How do they learn?
- 5. Problems they can solve?
- 6. Where have they been applied?
- 7. Summary

1. What are Artificial Neural Networks?

- Dynamic modelling technique
- Replicates the human brain's logic
 - Invented to further understanding of the human brain
- Has the ability to detect and project non-linear trends in data
- Can adapt and learn from changing environments

2. Where do Artificial Neural Networks come from?

The Human Brain

- 10 billion neurons
 - Neurons = processors
- 60 trillion interconnections
 - Massive complex system
- Characteristics
 - Massive parallel system
 - Fault tolerance
 - Adaptability

An Artificial Neuron

An Activation Function

- Type of soft switch
- Sigmoid function $f(x) = \frac{1}{1 e^{-x}}$
 - High values of x has values close to 1
 - Low values of x has values close to 0

An Artificial Neuron

3. What do they look like?

- Several types of ANNs:
 - Recurrent
 - Feed-Forward
 - Bridged
 - Fully Connected Cascade
 - Multi-Layered Perceptron
- We will consider the Feed-Forward Multi-Layered Perceptron
 - Simplest
 - Increase in complexity does not warrant increased accuracy in most practical cases

Feed-Forward Multi-Layered Perceptron (FF MLP)

Feed-Forward Multi-Layered Perceptron (FF MLP)

- Input layer
 - Data enters the system
 - Each neuron represents a variable
- Hidden layers
 - Can be several layers
 - Several neurons in each layer
 - A single layer is sufficient
- Output layer
 - Results of system
 - Can have several results

4. How do they learn?

Error-Correction Learning

How?

We have gained knowledge from:

- Teachers
- Parents
- Guardians
- Past experience

Made a decision that minimised error from past experience

Mathematically How?

• Choose an activation function A()

- Choose an error function $E[(A() actual)^2]$
- Calculate total error using all past data
- Change the weights using a training algorithm
 - Based on gradient descent
- Specify a number of training cycles until error is small enough

Learning Mechanism

24

Applying Learning

- Average return on Money Market 1975 2010
- Sources of data:
 - Firer, C and Staunton, M., 2002. 102 Years of South African financial market history. Investment Analysts Journal, 56, 57-65
 - Firer, C. and McLeod, H., 1999. Equities, Bonds, Cash and Inflation: Historical performance in South Africa, 1925 - 1998.
 Investment Analysts Journal, 50, 7-28.

Actual vs Expected

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

Months since 1 Jan 1975

2013 Convention

31 Oct & 1 Nov

Return on the Money Market

5. Problems ANNs can solve

Three types of problems:

5. Problems ANNs can solve

Three types of problems:

Time Series Problem: One Month Inflation Prediction

- Predict one month ahead inflation
- Sources of data:
 - Firer, C and Staunton, M., 2002. 102 Years of South African financial market history. Investment Analysts Journal, 56, 57-65
 - Firer, C. and McLeod, H., 1999. Equities, Bonds, Cash and Inflation: Historical performance in South Africa, 1925 - 1998.
 Investment Analysts Journal, 50, 7-28.

	Number of Observations		
Training Set Size	332		
Testing Set Size	100	2013 Convention	31 Oct &

Problems

- Input Neurons
 - Partial Auto-correlations suggests 24 previous months
- Hidden Neurons
- Resilient Propagation Algorithm
 - Learning Rate increase and decrease parameters

Problems

- Input Neurons
 - Partial Auto-correlations suggests 24 previous months
- Hidden Neurons
- Resilient Propagation Algorithm
 - Learning Rate increase and decrease parameters

Solution

31 Oct & 1 Nov

2013 Convention

31 Oct & 1 Nov

36

2013 Convention

31 Oct & 1 Nov

37

31 Oct & 1 Nov

Parameters

Learning	Learning
Rate	Rate
increase	Decieuse

Experiment: Predicting Inflation

ACTUARIAL SOCIETY OF SOUTH AFRICA

Best Estimate Error surface with CI of hidden vs lags - training

Experiment: Predicting Inflation

Experiment: Predicting Inflation Optimal ANN

Structure	ANN –	ANN –	ANN –	ANN –
	Training Set	Training Set	Testing Set	Testing Set
	MSE	RMSE	MSE	RMSE
24-16-1	0.000022	0.0047	0.0000229	0.0048

Experiment: Predicting Inflation Output

Average estimate vs actual - TRAINING SET

Experiment: Predicting Inflation Output

Average estimate vs actual - TESTING SET

2013 Convention 31 Oct & 1 Nov

43

Time Series Problem: Results 1

	ANN – Training Set	ANN– Testing Data (100 data points)	Exponential Smoothing	AR(13)
Root Mean Squared Error	0.0045	0.0048	0.00535	0.00504

Problems:

- Not consistent comparison
- Exponential and AR(13) have the advantage

Expectations:

• ANNs will perform best when considering more than 1 time step predictions

5. Problems ANNs can solve

Three types of problems:

Regression Problem: Function Tracker

ESITHI YA

YUNIB

Cosine function

Sin function with noise

5. Problems ANNs can solve

Three types of problems:

Classification Problem: Handwriting Classification

- Classify written symbols in 1 of 10 categories
- Training data 3000 images
- Testing data 200 images

Classification Problem: Results

	Training Data	Testing Data
Classification Accuracy	99%	95%

Industry Applications

- Credit Card Fraud
- Online Banking Fraud
- Insurance Claims Fraud
- Assessing Mortgage Risk
- Trading Strategies
 - Buy/Sell?
 - Increase or decrease?

6. Areas of Application

- Detecting credit card fraud
- Mortgage risk assessment
- Predicting bankruptcy
- Forecasting forward interest rates
- Predicting future general insurance claims
- Predicting stock exchange movements
- Forecasting commodity prices
- Forecasting foreign exchange rates

Classification

Applications

31 Oct & 1 Nov

Regression and Time Series Applications

7. So why ANNs? – Summary

- Dynamic Modelling Technique
 - Detects non-linear relationships
 - Adapts to changing environments
- Types of problems:
 - Regression
 - Time Series
 - Classification

Future work

- Money Market
- Bond Market
- Equity Market
- Combination of markets
- Fraud detection

Thank you

Dr P. de Villiers

(Department Electronic, Electric and Computer Engineering)

Dr C. Beyers

(Department of Insurance and Actuarial Science)

Matthew Smith

Matthew.Smith@up.ac.za

2013 Convention 31 Oct & 1 Nov

55