
A NEW ADVANCED NON-LINEAR HEAT 
CONDUCTION MODELLING TECHNOLOGY
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Heat transfer is as obvious to complex 
mechanical engineering systems as water is to 
life. The mechanism of heat transfer in solid 
materials is referred to as heat conduction, 
and it forms an intrinsic part of systems and 
machines which range from large scale power 
generation systems such as nuclear reactors, to 
thermal machines such as internal combustion 
engines and aircraft gas turbines. Heat 
conduction is not only a deciding factor to the 
energy efficiency of these systems, but also to 
the safety of critically important components. 
Its accurate description is therefore vital to the 
proper and safe operation of existing machines, 
while being essential to those engineers who 
take up the challenge of being the architects of 
tomorrow, by being the innovators of today. 

Sir Isaac Newton and Gottfried Leibniz 
independently laid the foundation to 
differential calculus, which made the accurate 
continuum description of physical systems 
possible. Today, this is referred to as continuum 
mechanics, and constitutes a theoretical 
field that allows engineering to be conducted 
with precision. A prime example is the partial 
differential equation that employs Fourier’s 
law (which dates back to 1811), to describe 
multi-dimensional heat conduction in gases, 
liquids and solids. When employed to describe 
real complex engineering components, the 
resulting mathematical expressions, although 
being accurate, constitute a formidable piece 
of differential calculus. 

Even Newton and Leibniz did not attempt 
to solve these via analytical means, and no 
general analytical solution exists to date. To 
the engineer however, it is the solution to 
this differential equation that constitutes 
the critical final step in describing the heat 
conduction physics in components, as this 
enables the accurate prediction of quantities 
such as the temperature field. Newton, as 
well as the giants of mathematics of the 18th 
and 19th centuries, made major contributions 
to the approximate or numerical solution of 
mathematical problems too complex to solve 
via analytical means. Foremost among these 
were Euler (1707-1783), Lagrange (1736-

Sir Isaac Newton (top) and Gottfried Leibniz (bottom)  independently developed differential 

calculus during the late 17th century. This led to accurate mathematical models of physical 

reality, which are today widely used in engineering, physics and medicine.

1813) and Gauss (1777-1855). This gave rise 
to the field known today as numerical analysis, 
and is currently the method of choice of 
scientists and engineers who busy themselves 
with the macroscopic continuum modelling 
(modelling scales are such that molecular 
activity is not described explicitly) of complex 
physical processes and systems. 

Numerical analysis involves solving a complex 
partial differential equation in discrete 
parts. These discrete parts are often termed 
discrete domains. In terms of non-linear heat 
conduction, the discrete domains are mainly 
spatial i.e. a specific problem is geometrically 
subdivided into a number of discrete spatial 
domains. An example of the latter is shown in 
> 2, where a part of a turbine guide vane  
> 1 is shown (modelled as a two-dimensional 
problem) which has been geometrically 
decomposed into a number of triangular and 
quadrilateral domains. The governing equations 
are applied to each discrete domain in such a 
manner that a set of discrete equations (one 
equation per vertex) results, which may be 
solved simultaneously by iterative means. 

Even though accepted numerical techniques 
guarantee only approximate solutions, they 
have a key characteristic: the error which is 
made via the approximation which underlies a 
numerical method, tends identically to zero as 
the discrete domains tend to zero. The trade- 
off is that the smaller the discrete domains, 
the more discrete equations are to be solved 
(this could be thousands or even millions). 
As solving even 100 discrete equations 
simultaneously by hand is an extremely 
time-consuming task, men such as Newton 
would not have been able to obtain accurate 
solutions to the partial differential equation 
describing the non-linear heat conduction in a 
realistic engineering component. This is where 
the advent of the digital computer is of great 
importance. Problem solved? Not quite...

Even though the latest in digital CPU 
technology is able to deal with millions of 
unknowns, the brute force approach does not 
offer enough memory or solution times that 

are quick enough for a modern world. There 
are two conflicting aspects here: required 
memory and CPU time. Solution algorithms 
that require low CPU times typically need 
excessive amounts of memory and vice versa. 
A technique which is both CPU-time and 
memory efficient (being matrix-free) therefore 
has considerable industrial importance, and it 
is here where the competition is on.
A decidedly complicating aspect to the 
development of fast efficient solution 
algorithms, is their applicability to complex 
spatial decomposition methodologies 
viz. the use of triangular domains in two 
dimensions. This is referred to as unstructured 
decomposition and produces the type of 
meshes shown in > 3 (triangular domain). The 
use of unstructured meshes is of considerable 
importance as this allows natural applicability 
to the complex geometries prevalent in 
modern engineering components. Combining 
structured and unstructured methodologies 
is however king, as this has impressive 
computational advantages. This is referred to 
as unstructured-hybrid spatial decomposition, 
and the result is shown in the figure. 

Efficient hybrid-unstructured solution 
algorithms which are applicable to large 
sets of equations may be subdivided into 
purely algebraic or partly-algebraic-partly-
geometric methods. The downside to the 
latter is that certain complications occur 
when complex geometries are prevalent (as 
is the case in engineering). Purely algebraic 
methods however, elevate the solution 
process to a new level of abstraction, making 
them complex to develop and implement. 
Because of the more generic applicability of 
the purely algebraic, as well as the preferred 
use of hybrid-unstructured meshes, it is the 
method currently under development at the 
Department of Mechanical and Aeronautical 
Engineering. The specific algebraic method 
being researched comes from a family of 
solution algorithms referred to as Krylov-

by Arnaud G. Malan

ht
tp

://
w

w
w

.h
ao

.u
ca

r.e
du

/p
ub

lic
/e

du
ca

ti
on

/s
p/

im
ag

es
/n

ew
to

n.
ht

m
l

ht
tp

://
w

w
w

.a
ns

w
er

s.
co

m
/t

op
ic

/g
ot

tf
rie

d-
le

ib
ni

z



I
N

N
O

V
A

T
E

 
n

o
.

1
 

2
0

0
6

E
S

S
A

Y
S

77

subspace methods. In the context of non-linear 
problems, these are also known as generalised 
minimal residuals (GMRES) methods.  

The work conducted by the author has 
culminated in a GMRES solver which models 
non-linear heat conduction in complex 
engineering systems fast and efficiently. A key 
solver ingredient is Newton-linearisation (as 
applied to systems of non-linear equations), 
which is done analytically. The resulting system 
of discrete equations is then solved via the 
GMRES algorithm, with the associated Krylov-
subspace vectors being preconditioned via 
lower-upper symmetric Gauss-Seidel (LU-SGS), 
as first proposed by Luo et al.1 To test the 
efficiency of the developed technology, the 
temperature distribution in an experimental 
aerospace gas-turbine engine guide vane is 
modelled (a schematic of the vane is shown 
in > 2). This vane is known as Mark II, and is 
subjected to gas flows in excess of 780O C.3 
To ensure that the vane material temperatures 
are kept below certain allowable values, it 
is provided with internal cooling channels 
(as shown in the figure). Note that the 
temperatures predicted with the developed 
technology compare well with that of Bohn 
et al.2

Of particular interest is how fast the developed 
solver is able to find a solution to the above 
problem. Shown in > 3 are comparisons of the 
computational time required by the proposed 
scheme (LU-SGS+GMRES) with that of other 
purely algebraic matrix-free methods. It is 
clear that the former outperforms the other 
algorithms in terms of required computer time 
by a factor 20. The premium is that it requires 
only a third more memory, making it a truly 
fast and efficient algebraic solver.
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> 2. Close-up view of the hybrid unstructured computational mesh (left) used 
to model the non-linear heat conduction in a turbine guide vane. The tempera-
tures (in Kelvin) predicted by the developed technology are also shown (right). 
These compare well with published data.

> 1. Sectional view of the Mark II gas turbine guide vane. The vane contains 
10 cooling slots through which air is circulated for the purpose of ensuring that 
temperatures remain below safe limits. The effective convective heat transfer 
coefficient as well as mean temperature of the cooling air in each slot is shown 
on the table.

> 3. The computational efficiency of the developed solver (LU-SGS+GMRES) is 
compared to that of other solution algorithms. What is plotted is the residual or 
error on the vertical axis and actual CPU time on the horizontal axis. The solver 
clearly outperforms other techniques by a significant margin.
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