Code | Faculty |
---|---|
02133400 | Faculty of Natural and Agricultural Sciences |
Credits | Duration |
---|---|
Duration of study: 3 years | Total credits: 430 |
The following persons will be considered for admission: a candidate who is in possession of a certificate that is deemed by the University to be equivalent to the required Grade 12 certificate with university endorsement; a candidate who is a graduate from another tertiary institution or has been granted the status of a graduate of such an institution; and a candidate who is a graduate of another faculty at the University of Pretoria.
Life Orientation is excluded in the calculation of the Admission Point Score (APS).
Grade 11 results are used for the provisional admission of prospective students. Final admission is based on the Grade 12 results.
Minimum requirements | ||||||||||||
Achievement level | ||||||||||||
Afrikaans or English | Mathematics | Physical Science | APS | |||||||||
NSC/IEB | HIGCSE | AS-Level | A-Level | NSC/IEB | HIGCSE | AS-Level | A-Level | NSC/IEB | HIGCSE | AS-Level | A-Level | |
5 | 3 | C | C | 5 | 3 | C | C | 5 | 3 | C | C | 30 |
Candidates who do not comply with the minimum admission requirements for BSc (Ecology), may be considered for admission to the BSc – Extended programme for the Biological and Agricultural Sciences. The BSc – Extended programme takes place over a period of four years instead of the normal three years.
BSc - Extended programme for the Biological and Agricultural Sciences:
Minimum requirements | |||||||||||||
Achievement level | |||||||||||||
| Afrikaans or English | Mathematics | Physical Science | APS | |||||||||
NSC/IEB | HIGCSE | AS-Level | A-Level | NSC/IEB | HIGCSE | AS-Level | A-Level | NSC/IEB | HIGCSE | AS-Level | A-Level | ||
BSc – Extended programme for the Biological and Agricultural Sciences | 4 | 3 | D | D | 4 | 3 | D | D | 4 | 3 | D | D | 24 |
Electives are chosen as follows:
Second year – 10 credits
A student must pass all the minimum prescribed and elective module credits as set out at the end of each year within a programme as well as the total required credits to comply with the particular degree programme. Please refer to the curricula of the respective programmes. At least 144 credits must be obtained at 300-/400-level, or otherwise as indicated by curriculum. The minimum module credits needed to comply with degree requirements is set out at the end of each study programme. Subject to the programmes as indicated a maximum of 150 credits will be recognised at 100-level. A student may, in consultation with the Head of Department and subject to the permission by the Dean, select or replace prescribed module credits not indicated in BSc three-year study programmes to the equivalent of a maximum of 36 module credits.
It is important that the total number of prescribed module credits is completed during the course of the study programme. The Dean may, on the recommendation of the Head of Department, approve deviations in this regard. Subject to the programmes as indicated in the respective curricula, a student may not register for more than 75 module credits per semester at first-year level subject to permission by the Dean. A student may be permitted to register for up to 80 module credits in a the first semester during the first year provided that he or she obtained a final mark of no less than 70% for grade 12 Mathematics and achieved an APS of 34 or more in the NSC.
Students who are already in possession of a bachelor’s degree, will not receive credit for modules of which the content overlap with modules from the degree that was already conferred. Credits will not be considered for more than half the credits passed previously for an uncompleted degree. No credits at the final-year or 300- and 400-level will be granted.
The Dean may, on the recommendation of the programme manager, approve deviations with regard to the composition of the study programme.
Please note: Where elective modules are not specified, these may be chosen from any modules appearing in the list of modules.
It remains the student’s responsibility to acertain, prior to registration, whether they comply with the prerequisites of the modules they want to register for.
The prerequisites are listed in the Alphabetical list of modules.
General promotion requirements in the faculty
All students whose academic progress is not acceptable can be suspended from further studies.
Minimum credits: 140
Minimum credits:
Fundamental = 12
Core = 128
Additional information:
Students who do not qualify for AIM 102 must register for AIM 111 and AIM 121.
Module content:
Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.
Module content:
Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.
Module content:
The module aims to equip students with the ability to cope with the reading and writing demands of scientific disciplines.
Module content:
Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology. Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.
Module content:
Simple statistical analysis: Data collection and analysis: Samples, tabulation, graphical representation, describing location, spread and skewness. Introductory probability and distribution theory. Sampling distributions and the central limit theorem. Statistical inference: Basic principles, estimation and testing in the one- and two-sample cases (parametric and non-parametric). Introduction to experimental design. One- and twoway designs, randomised blocks. Multiple statistical analysis: Bivariate data sets: Curve fitting (linear and non-linear), growth curves. Statistical inference in the simple regression case. Categorical analysis: Testing goodness of fit and contingency tables. Multiple regression and correlation: Fitting and testing of models. Residual analysis. Computer literacy: Use of computer packages in data analysis and report writing.
Module content:
Basic plant structure and function; introductory plant taxonomy and plant systematics; principles of plant molecular biology and biotechnology; adaptation of plants to stress; medicinal compounds from plants; basic principles of plant ecology and their application in natural resource management.
Module content:
General introduction to inorganic, analytical and physical chemistry. Atomic structure and periodicity. Molecular structure and chemical bonding using the VSEOR model. Nomenclature of inorganic ions and compounds. Classification of reactions: precipitation, acid-base, redox reactions and gas-forming reactions. Mole concept and stoichiometric calculations concerning chemical formulas and chemical reactions. Principles of reactivity: energy and chemical reactions. Physical behaviour gases, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to chemical kinetics.
Module content:
Theory: General physical-analytical chemistry: Chemical equilibrium, acids and bases, buffers, solubility equilibrium, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and aminoacids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.
Module content:
Chromosomes and cell division. Principles of Mendelian inheritance: locus and alleles, dominance interactions and epistasis. Probability studies. Sex determination and sex linked traits. Pedigree analysis. Extranuclear inheritance. Genetic linkage and chromosome mapping. Chromosome variation.
Module content:
The module will introduce the student to the field of Microbiology. Basic Microbiological aspects that will be covered include introduction into the diversity of the microbial world (bacteria, archaea, eukaryotic microorganisms and viruses), basic principles of cell structure and function, microbial nutrition and microbial growth and growth control. Applications in Microbiology will be illustrated by specific examples i.e. bioremediation, animal-microbial symbiosis, plant-microbial symbiosis and the use of microorganisms in industrial microbiology. Wastewater treatment, microbial diseases and food will be introduced using specific examples.
Module content:
Introductory study of the ultra structure, function and composition of representative cells and cell components. General principles of cell metabolism, molecular genetics, cell growth, cell division and differentiation.
Module content:
Units, vectors, one dimensional kinematics, dynamics, work, equilibrium, sound, liquids, heat, thermodynamic processes, electric potential and capacitance, direct current and alternating current, optics, modern physics, radio activity.
Module content:
*Students will not be credited for more than one of the following modules for their degree: WTW 134, WTW 165, WTW 114, WTW 158. WTW 134 does not lead to admission to Mathematics at 200 level and is intended for students who require Mathematics at 100 level only. WTW 134 is offered as WTW 165 in the second semester only to students who have applied in the first semester of the current year for the approximately 65 MBChB, or the 5-6 BChD places becoming available in the second semester and who were therefore enrolled for MGW 112 in the first semester of the current year.
Functions, derivatives, interpretation of the derivative, rules of differentiation, applications of differentiation, integration, interpretation of the definite integral, applications of integration. Matrices, solutions of systems of equations. All topics are studied in the context of applications.
Module content:
Animal classification, phylogeny, organization and terminology. Evolution of the various animal phyla, morphological characteristics and life cycles of parasitic and non-parasitic animals. Structure and function of reproductive, respiratory, excretory, circulatory and digestive systems.
Minimum credits: 146
Minimum credits:
Core = 136
Elective = 10
Module content:
Structural and ionic properties of amino acids. Peptides, the peptide bond, primary, secondary, tertiary and quaternary structure of proteins. Interactions that stabilise protein structure, denaturation and renaturation of proteins. Introduction to methods for the purification of proteins, amino acid composition, and sequence determinations. Introduction to enzyme kinetics and enzyme inhibition. Allosteric enzymes, regulation of enzyme activity, active centres and mechanisms of enzyme catalysis. Examples of industrial applications of enzymes. Practical training in laboratory techniques and Good Laboratory Practice. Techniques for the quantitative and qualitative analysis of biological molecules. Processing and presentation of scientific data.
Module content:
Origin and affinity of South African flora and vegetation types; principles of plant geography; plant diversity in southern Africa; characteristics, environments and vegetation of South African biomes and associated key ecological processes; centra of plant endemism; rare and threatened plant species; biodiversity conservation and ecosystem management; invasion biology; conservation status of South African vegetation types.
Module content:
Nitrogen metabolism in plants; nitrogen fixation in Agriculture; plant secondary metabolism and natural products; photosynthesis and carbohydrate metabolism in plants; applications in solar energy; plant growth regulation and the Green Revolution; plant responses to the environment; developing drought tolerant and disease resistant plants.
Module content:
Origin and development of soil, weathering and soil formation processes. Profile differentiation and morphology. Physical characteristics: texture, structure, soil water, atmosphere and temperature. Chemical characteristics: clay minerals, ion exchange, pH, buffer action, soil acidification and salinisation of soil. Soil fertility and fertilisation. Soil classification. Practical work: Laboratory evaluation of simple soil characteristics. Field practicals on soil formation in the Pretoria area.
Module content:
Chemical nature of DNA. Replication transcription, RNA processing and translation. Control of gene expression in prokaryotes and eukaryotes. Recombinant DNA technology and its applications in gene analysis and manipulation.
Module content:
Chromosome structure and transposable elements. Mutation and DNA repair. Genomics and proteomics. Organelle genomes. Introduction to genetic analysis of populations: allele and genotypic frequencies, Hardy Weinberg Law, its extensions and implications for different mating systems. Introduction to quantitative and evolutionary genetics.
Module content:
Growth, replication and survival of bacteria, Energy sources, harvesting from light versus oxidation, regulation of catabolic pathways, chemotaxis. Nitrogen metabolism, iron-scavenging. Alternative electron acceptors: denitrification, sulphate reduction, methanogenesis. Bacterial evolution, systematic and genomics. Biodiversity; bacteria occurring in the natural environment (soil, water and air), associated with humans, animals, plants, and those of importance in foods and in the water industry.
Module content:
Organisation and molecular architecture of fungal thalli, chemistry of the fungal cell. Chemical and physiological requirements for growth and nutrient acquisition. Mating and meiosis; spore development; spore dormancy, dispersal and germination. Fungi as saprobes in soil, air, plant, aquatic and marine ecosystems; role of fungi as decomposers and in the deterioration of materials; fungi as predators and parasites; mycoses, mycetisms and mycotoxicoses; fungi as symbionts of plants, insects and animals. Applications of fungi in biotechnology.
Module content:
Origin and extent of modern invertebrate diversity; parasites of man and domestic animals; biology and medical importance of arachnids; insect life styles; the influence of the environment on insect life histories; insect phytophagy, predation and parasitism; insect chemical, visual, and auditory communication; freshwater invertebrates and their use as biological indicators.
Module content:
Introduction to general vertebrate diversity; African vertebrate diversity; vertebrate structure and function; vertebrate evolution; vertebrate relationships; aquatic vertebrates; terrestrial ectotherms; terrestrial endotherms; vertebrate characteristics; classification; structural adaptations; habits; habitats; conservation problems; impact of humans on other vertebrates.
Module content:
This module will give an overview of earth history, from the Archaean to the present. Important concepts such as the principles of stratigraphy and stratigraphic nomenclature, geological dating and international and South African time scales will be introduced. A brief introduction to the principles of palaeontology will be given, along with short descriptions of major fossil groups, fossil forms, ecology and geological meaning. In the South African context, the major stratigraphic units, intrusions and tectonic/metamorphic events will be detailed, along with related rock types, fossil contents, genesis and economic commodities. Practical work will focus on the interpretation of geological maps and profiles.
Module content:
Biochemistry of carbohydrates. Thermodynamics and bioenergetics. Glycolysis, citric acid cycle and electron transport. Glycogen metabolism, pentose-phosphate pathway, gluconeogenesis and photosynthesis. Practical training in study and analysis of metabolic pathways and enzymes. Scientific method and design: Hypothesis design and testing, method design and scientific controls.
Module content:
Biochemistry of lipids, membrane structure, anabolism and catabolism of lipids. Nitrogen metabolism, amino acid biosynthesis and catabolism. Biosynthesis of neurotransmitters, pigments, hormones and nucleotides from amino acids. Catabolism of pureness and pyrimidines. Therapeutic agents directed against nucleotide metabolism. Examples of inborn errors of metabolism of nitrogen containing compounds. The urea cycle, nitrogen excretion. Practical training in scientific writing skills: evaluation of a scientific report. Techniques for separation and analysis of biological molecules
Module content:
Biochemistry of nutrition and toxicology. Proximate analysis of nutrients. Review of energy requirements and expenditure. Respiratory quotient. Requirements and function of water, vitamins and minerals. Interpretation and modification of RDA values for specific diets, eg growth, exercise, pregnancy and lactation, aging and starvation. Interactions between nutrients. Comparison of monogastric and ruminant metabolism. Cholesterol, polyunsaturated, essential fatty acids and dietary anti-oxidants. Oxidation of fats. Biochemical mechanisms of water- and fat-soluble vitamins and assessment of vitamin status. Mineral requirements, biochemical mechanisms, imbalances and diarrhoea. Biochemistry of xenobiotics: absorption, distribution, metabolism and excretion (ADME); detoxification reactions: oxidation/reduction (Phase I), conjugations (Phase II), export from cells (Phase III); factors affecting metabolism and disposition. Toxic responses: tissue damage and physiological effects, teratogenesis, immunotoxicity, mutagenesis and carcinogenesis. Examples of toxins: biochemical mechanisms of common toxins and their antidotes. Antibiotics and resistance. Natural toxins from fungi, plants and animals: goitrogens, cyanogens, cholineesterase inhibitors, ergotoxin, aflatoxins Practical training in analyses of nutrients, fatty acids separations, antioxidant determination, and enzyme activity measurements, PO ratio of mitochondria, electrophoresis, extraction, solubility and gel permeation techniques.
Module content:
Development and importance of crop protection. Basic principles in crop protection i.e. epidemic development of disease and insect pest populations, ecology of plant diseases and abiotic factors that affect plant health i.e. environmental pollution and pesticides, nutrient deficiencies and extreme environmental conditions. Ecological aspects of plant diseases, pest outbreaks and weed invasion. Important agricultural pests and weeds. Life cycles of typical disease causing organisms. Basic principles of integrated pest and disease management.
Module content:
Fundamental principles of plant pathology. The concept of disease in plants. Causes of plant diseases. Stages in development of plant diseases. Disease cycles. Diagnosis of plant diseases.
Minimum credits: 144
Minimum credits:
Core = 144
Module content:
The emphasis is on the efficiency of the mechanisms whereby C3-, C4 and CAM-plants bind CO2 and how it impacted upon by environmental factors. The mechanisms and factors which determine the respiratory conversion of carbon skeletons and how production is affected thereby will be discussed. Insight into the ecological distribution and manipulation of plants for increased production is gained by discussing the internal mechanisms whereby carbon allocation, hormone production, growth, flowering and fruitset are influenced by external factors. To understand the functioning of plants in diverse environments, the relevant structural properties of plants, and the impact of soil composition, water flow in the soil-plant air continuum and long distance transport of assimilates will be discussed. Various important techniques will be used in the practicals to investigate aspects such as water-use efficiency, photosynthesis and respiration of plants.
Module content:
Theory of plant community concepts, floristic and structural composition, plant diversity, ecological succession, landscape ecology. Data processing techniques. Species interactions and an evaluation of their effects on interacting species. Fundamentals of plant population biology: life tables; plant breeding systems and pollination; population dynamics; life history strategies; intraspecific competition; interspecific competition and co-existence.
Module content:
Basic principles and methods of plant classification. Sources of plant variation. Modern methods to ascertain evolutionary relationships among plants. The extent and significance of vascular plant diversity. General structural and biological characteristics of evolutionary and ecologically important plant groups. Botanical nomenclature. Plant identification in practice; identification methods, keys, herbaria and botanical gardens. Diagnostic characters for the field identification of trees, wild flowers and grasses. Family recognition of southern African plants. Available literature for plant identification. Methods to conduct floristic surveys. Nature and significance of voucher specimens.
Module content:
Scientific approach to ecology; evolution and ecology; the individual and its environment; population characteristics and demography; competition; predation; plant-herbivore interactions; regulation of populations; population manipulation.
Module content:
The scientific approach; characteristics of the community; the community as a superorganism; community changes; competition as a factor determining community structure; disturbance as a determinant of community structure; community stability; macroecological patterns and mechanisms.
Module content:
This module focuses on the means by which animals can sense and respond to the external and internal environment. Topics covered include: (i) the structure and function of biological membranes; (ii) neurons and nervous systems; (iii) sensing the environment; (iv) glands, hormones and regulation of development and growth; (v) muscles and animal movement and (vi) the initiation and control of behaviour. The implications of these physiological processes for animal conservation and management will be emphasised. A comparative approach will be adopted throughout the module to highlight the commonalities as well as the ways in which animal lineages have achieved similar functional outcomes from different structural adaptations.
Module content:
Evolution as a process and pattern, prime movers in evolution: Selection, drift, general population genetics. Population differentiation, clines, subspecies and species, adaptation as a major force in evolution and the panglossian paradigm, molecular evolution. Phylogeography, phylogenetic reconstruction. Evolutionary biogeography. Adaptation, Darwin's formulation, proximate and ultimate causation, genetic and developmental constraints, optimality. Phenotypic models, the comparative method, convergent evolution. Evolution of complex biological systems, origin of life and sex, macro-evolution, punctuated equilibrium, human evolution. Levels of selection. Species concepts.
Module content:
This module is intended to provide students with skills to undertake field surveys that are essential for research and planning in the conservation of biodiversity. The module has a large fieldwork component. A field trip will be conducted over a ten-day period during the September vacation in the Sani Pass region of the Drakensberg (including South Africa and Lesotho).
The students will be actively involved in planning and executing the field surveys, and will be responsible for analysing and presenting the results. The students will gain valuable practical experience in the field by applying a number of survey techniques and focusing on several different taxa that are relevant to conservation ecology.
Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App