Programme: BScAgric Agricultural Economics and Agribusiness Management

Kindly take note of the disclaimer regarding qualifications and degree names.
Code Faculty
02133410 Faculty of Natural and Agricultural Sciences
Credits Duration NQF level
Minimum duration of study: 4 years Total credits: 522 NQF level:  08
Contact:
Mrs RM Ngwenya
[email protected]
+27 (0)124208420

Admission requirements

  • The following persons will be considered for admission: a candidate who is in possession of a certificate that is deemed by the University to be equivalent to the required Grade 12 certificate with university endorsement, a candidate who is a graduate from another tertiary institution or has been granted the status of a graduate of such an institution, and a candidate who is a graduate of another faculty at the University of Pretoria.
  • Life Orientation is excluded in the calculation of the Admission Point Score (APS).
  • Grade 11 results are used for the conditional admission of prospective students. Final admission is based on the Grade 12 results.

Minimum requirements

Achievement level

English Home Language or English First Additional Language

Mathematics

Physical Science 

APS

NSC/IEB

AS Level

NSC/IEB

AS Level

NSC/IEB

AS Level

5

C

5

C

5

C

32

*  Cambridge A level candidates who obtained at least a D in the required subjects, will be considered for admission. International Baccalaureate (IB) HL candidates who obtained at least a 4 in the required subjects, will be considered for admission.

Candidates who do not comply with the minimum admission requirements for BScAgric (Agricultural Economics/ Agribusiness Management), may be considered for admission to the BSc – Extended programme – Biological and Agricultural Sciences. This programme takes a year longer than the normal programmes to complete.

BSc – Extended Programme – Biological and Agricultural Sciences

 Minimum requirements

Achievement level

English Home Language or English First Additional Language

Mathematics

Physical Science  

APS

NSC/IEB

AS Level

NSC/IEB

AS Level

NSC/IEB

AS Level

4

D

4

D

4

D

26

 

Other programme-specific information

 

 

 

Compilation of curriculum
Students must register for elective modules in consultation with the head of department who must ensure that the modules do not clash on the set timetable.

The Dean may, in exceptional cases and on recommendation of the relevant head of department, approve deviations from the prescribed curriculum.

Promotion to next study year

A student will be promoted to the following year of study if he or she passed 100 credits of the prescribed credits for a year of study, unless the Dean on the recommendation of the relevant head of department decides otherwise. A student who does not comply with the requirements for promotion to the following year of study, retains the credit for the modules already passed and may be admitted by the Dean, on recommendation of the relevant head of department, to modules of the following year of study to a maximum of 48 credits, provided that it will fit in with both the lecture and examination timetable.

Pass with distinction

The BScAgric degree is conferred with distinction if a student obtains a weighted average of at least 75% in the modules of the major subjects in the third and the fourth year of study, with a weighted average of at least 65% in the other modules of the third and the fourth year of study.

Minimum credits: 122

Fundamental =   12

Core             =   110

Additional information:

Students who do not qualify for AIM 102 must register for AIM 111 and AIM 121.

Students who do not qualify for STK 110 must register for STK 113 and STK 123

Fundamental modules

Core modules

  • Module content:

    Basic plant structure and function; introductory plant taxonomy and plant systematics; principles of plant molecular biology and biotechnology; adaptation of plants to stress; medicinal compounds from plants; basic principles of plant ecology and their application in natural resource management.

    View more

  • Module content:

    General introduction to inorganic, analytical and physical chemistry. Atomic structure and periodicity. Molecular structure and chemical bonding using the VSEOR model. Nomenclature of inorganic ions and compounds. Classification of reactions: precipitation, acid-base, redox reactions and gas-forming reactions. Mole concept and stoichiometric calculations concerning chemical formulas and chemical reactions. Principles of reactivity: energy and chemical reactions. Physical behaviour gases, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to chemical kinetics.

    View more

  • Module content:

    Theory: General physical-analytical chemistry: Chemical equilibrium, acids and bases, buffers, solubility equilibrium, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and aminoacids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.

    View more

  • Module content:

    The nature and function of accounting; the development of accounting; financial position; financial result; the recording process; processing of accounting data; treatment of VAT; elementary income statement and balance sheet; flow of documents; accounting systems; introduction to internal control and internal control measures; bank reconciliations; control accounts; adjustments; financial statements of a sole proprietorship; the accounting framework.

    View more

  • Module content:

    Property, plant and equipment; intangible assets; inventories; liabilities; presentation of financial statements; enterprises without profit motive; partnerships; companies; close corporations; cash flow statements; analysis and interpretation of financial statements.

    View more

  • Module content:

    Chromosomes and cell division. Principles of Mendelian inheritance: locus and alleles, dominance interactions, extensions and modifications of basic principles.. Probability studies. Sex determination and sex linked traits. Pedigree analysis. Genetic linkage and chromosome mapping. Chromosome variation.

    View more

  • Module content:

     Introduction to the molecular structure and function of the cell. Basic chemistry of the cell. Structure and composition of prokaryotic and eukaryotic cells. Ultrastructure and function of cellular organelles, membranes and the cytoskeleton. General principles of energy, enzymes and cell metabolism. Selected processes, e.g. glycolysis, respiration and/or photosynthesis. Introduction to molecular genetics: DNA structure and replication, transcription, translation. Cell growth and cell division.

    View more

  • Module content:

    *Students will not be credited for more than one of the following modules for their degree: WTW 134, WTW 165, WTW 114, WTW 158. WTW 134 does not lead to admission to Mathematics at 200 level and is intended for students who require Mathematics at 100 level only. WTW 134 is offered as WTW 165 in the second semester only to students who have applied in the first semester of the current year for the approximately 65 MBChB, or the 5-6 BChD places becoming available in the second semester and who were therefore enrolled for MGW 112 in the first semester of the current year. 
    Functions, derivatives, interpretation of the derivative, rules of differentiation, applications of differentiation, integration, interpretation of the definite integral, applications of integration. Matrices, solutions of systems of equations. All topics are studied in the context of applications.

    View more

  • Module content:

    Animal classification, phylogeny organisation and terminology. Evolution of the various animal phyla, morphological characteristics and life cycles of parasitic and non-parasitic animals. Structure and function of reproductive,
    respiratory, excretory, circulatory and digestive systems in various animal phyla. In-class discussion will address the sustainable development goals #3, 12, 13, 14 and 15 (Good Health and Well-being. Responsible Consumption and Production, Climate Action, Life Below Water, Life on Land).

    View more

Minimum credits: 125

Core modules

  • Module content:

    This module deals with the core principles of economics. A distinction between macroeconomics and microeconomics is made. A discussion of the market system and circular flow of goods, services and money is followed by a section dealing with microeconomic principles, including demand and supply analysis, consumer behaviour and utility maximisation, production and the costs thereof, and the different market models and firm behaviour. Labour market institutions and issues, wage determination, as well as income inequality and poverty are also addressed. A section of money, banking, interest rates and monetary policy concludes the course.

    View more

  • Module content:

    This module deals with the core principles of economics, especially macroeconomic measurement the private and public sectors of the South African economy receive attention, while basic macroeconomic relationships and the measurement of domestic output and national income are discussed. Aggregate demand and supply analysis stands core to this course which is also used to introduce students to the analysis of economic growth, unemployment and inflation. The microeconomics of government is addressed in a separate section, followed by a section on international economics, focusing on international trade, exchange rates and the balance of payments. The economics of developing countries and South Africa in the global economy conclude the course.

    View more

  • Module content:

    Lectures: Food Science as a discipline. Activities of Food Scientists and Nutritionists. How food is produced, processed and distributed (food pipeline). World food problem. Human nutrition and human food requirements. Constituents of foods: Functional properties. Food quality. Food deterioration and control (food preservation). Unit operations in food processing. Food safety, risks and hazards. Principles of food packaging. Food legislation and labelling. Food processing and the environment. The aforementioned lectures focus on the role of Food Science in addressing the UN Sustainable Development Goals (#1, 2, 3, 6 and 7). Practicals: Group assignments applying the theory in practice; practical demonstrations in pilot plants; guest lecturers on the world of food scientists and nutritionists; factory visit/videos of food processing.

    View more

  • Module content:

    Origin and development of soil, weathering and soil formation processes. Profile differentiation and morphology. Physical characteristics: texture, structure, soil water, atmosphere and temperature. Chemical characteristics: clay minerals, ion exchange, pH, buffer action, soil acidification and salinisation of soil. Soil fertility and fertilisation. Soil classification. Practical work: Laboratory evaluation of simple soil characteristics. Field practicals on soil formation in the Pretoria area.

    View more

  • Module content:

    Introduction to financial management in agriculture: Farm management and agricultural finance, farm management information; analysis and interpretation of farm financial statements; risk and farm planning. Budgets: partial, break-even, enterprise, total, cash flow and capital budgets. Time value of money. Introduction to production and resource use: the agricultural production function, total physical product curve, marginal physical product curve, average physical product curve, stages of production. Assessing short-term business costs; Economics of short-term decisions. Economics of input substitution: Least-cost use of inputs for a given output, short-term least-cost input use, effects of input price changes. Least-cost input use for a given budget. Economics of product substitution. Product combinations for maximum profit. Economics of crop and animal production.

    View more

  • Module content:

    The agribusiness system; the unique characteristics of agricultural products; marketing functions and costs; market structure; historical evolution of agricultural marketing in South Africa. Marketing environment and price analysis in agriculture: Introduction to supply and demand analysis.
    Marketing plan and strategies for agricultural commodities; market analysis; product management; distribution channels for agricultural commodities, the agricultural supply chain, the agricultural futures market.

    View more

  • Module content:

    Influence of climate on cropping systems in South Africa. The surface energy balance. Hydrological cycles and the soil water balance. Sustainable crop production. Simple radiation and water limited models. Potential yield, target yield and maximum economic yield. Crop nutrition and fertiliser management. Principles of soil cultivation and conservation. Climate change and crop production – mitigation and adaptation.

    View more

  • Module content:

    Inferential concepts. Experimental and observational data. Measures of association, uncertainty and goodness of fit. Sampling error and accuracy of estimation. Introduction to linear regression, reduction of variation due to regression. Conditional distributions of residuals.  Simulation based inference: conditional means and prediction intervals. Bivariate data visualisation. Supporting mathematical concepts. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.
    This module is also presented as a summer school for students who initially elected and passed STK 120 with a final mark of at least 60% and then decides to further their studies in statistics as well as for students who achieved a final mark of between 40% - 49% in STC 122 during semester 2.

    View more

  • Module content:

    Descriptive statistics:
    Sampling and the collection of data; frequency distributions and graphical representations. Descriptive measures of location and dispersion.
    Probability and inference:
    Introductory probability theory and theoretical distributions. Sampling distributions. Estimation theory and hypothesis testing of sampling averages and proportions (one and two-sample cases). Supporting mathematical concepts. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.

    View more

  • Module content:

    A brief perspective on the South African livestock industry with reference to the role of Sustainable development goals (SDGs) in a Southern African context. South African biomes in which animal production is practised. Animal ecological factors that influence regional classification. Introduction to adaptation physiology with reference to origin and domestication of farm and companion animals. Livestock species, breed development and breed characterisation. Basic principles of animal breeding and genetics, animal nutrition. Practical work includes identification and classification of different breeds of livestock.

    View more

  • Module content:

    Introduction to the concepts of animal production systems in South African production environments. Principles and requirements for extensive, semi-intensive and intensive livestock production with reference to large- and small stock, poultry and pigs. Principles of communal farming systems in Southern Africa. Game management systems with reference to conservation and game farming. The role of the human in livestock production systems and sustainable production.

    View more

Minimum credits: 132

Core modules

  • Module content:

    Communication: Definition and clarification of concepts. Theory and elements of communication. Verbal and non-verbal communication. Determinants of interpersonal communication. Abating factors impeding communication. Nature, classification and efficiency of communication channels.

    View more

  • Module content:

    Basic principles of law of contract. Law of sales, credit agreements, lease.

    View more

  • Module content:

    Microeconomics
    Microeconomic insight is provided into: consumer and producer theory, general microeconomic equilibrium, Pareto-optimality and optimality of the price mechanism, welfare economics, market forms and the production structure of South Africa. Statistic and econometric analysis of microeconomic issues.

    View more

  • Module content:

    Microeconomics
    From general equilibrium and economic welfare to uncertainty and asymmetric information. In this module we apply the principles learned in EKN 224 on the world around us by looking at the microeconomic principles of labour and capital markets, as well as reasons why the free market system could fail. We touch on the government’s role in market failures. The course includes topics of the mathematical and econometric analysis of microeconomic issues.

    View more

  • Module content:

    Historical evolution of South African agricultural policy. Agriculture and the state: reasons for government intervention. Theoretical aspects of agricultural policy. Introduction to agricultural policy analysis. Welfare principles, pareto optimality. Macroeconomic policy and the agricultural sector. International agricultural trade.

    View more

  • Module content:

    The modern food and agribusiness system. Key drivers in the global context. Whole farm planning and budget development The financial analysis of farm financial, financial modelling, the financing decision: capital acquisition, creditworthiness, different capital sources, capital structures. The investment decision and working capital management. Value chains in agribusiness. Risk management. Strategic management and marketing principles in agribusiness. Operational management and human resources management. Business planning for agribusiness.

    View more

  • Module content:

    Statistical problem solving. Causality, experimental and observational data. Probability theory. Multivariate random variables. Discrete and continuous probability distributions. Stochastic representations. Measures of association. Expected values and conditional expectation. Simulation techniques. Supporting mathematical concepts. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.

    View more

  • Module content:

    Multivariate probability distributions. Sampling distributions and the central limit theorem. Frequentist and Bayesian inference. Statistical learning and decision theory. Simulation techniques enhancing statistical thinking. Supervised learning:  linear regression, estimation and inference. Non-parametric modelling. Supporting mathematical concepts. Statistical algorithms. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.

    View more

Minimum credits: 143

Core             =  123

Electives      =   20

Core modules

  • Module content:

    Overview of the concepts and theories of rural development; the role of agriculture in rural development. Rural livelihood systems: household farming systems; decisions and the operation of farming systems; non-farm enterprises and SMMEs in the rural economy; household food security. Rural institutions: definitions and role of institutions; land tenure; rural financial markets; local institutional development; human capital, knowledge systems. Methodologies for rural development: the farming systems approach; participatory techniques; assessment of land use patterns (zoning techniques); typology techniques; technology transfer and decision-making support; communication for rural development; planning rural development at local level.

    View more

  • Module content:

    Public finance
    Role of government in the economy. Welfare economics and theory of optimality. Ways of correcting market failures. Government expenditure theories, models and programmes. Government revenue. Models on taxation, effects of taxation on the economy. Assessment of taxation from an optimality and efficiency point of view. South African perspective on public finance.

    View more

  • Module content:

    This module will focus on the fundamentals of demand, supply and agricultural price analysis. After providing an appropriate background in the theoretical concepts of demand and supply these basics will be applied in the generation of econometric simulation models. This will include the identification of supply and demand shifters as well as the elasticities, flexibilities, and impact multipliers. Practical experience in the formulation of these models will be attained from practical sessions. The student will submit a project in which he/she must analyse the demand or supply patterns of a commodity of his/her choice by generating an econometric model. Agricultural price analysis: price determination under different market structures followed by practical sessions on measuring market structures in various ways. This will include the calculation of market concentration. Price trend analysis and measurement of price changes by using indexes, and especially seasonal indexing. All of this will be supported by the relevant practical sessions.

    View more

  • Module content:

    Derivative instruments in agriculture: To prepare students for taking the SAFEX Agricultural Markets Division brokerage exam. Giving an in-depth knowledge on the importance of hedging. Giving an in-depth knowledge on designing and implementation of low/zero risk hedging strategies. Introduction to the mathematics of portfolio management and mathematical modelling of derivatives. Working knowledge of the mathematical relationships in the management of a hedged portfolio. Working knowledge on the applicable software for managing derivative portfolios. Introduction into the management of option portfolios. To expand the thinking on the uses of derivatives, by also dealing with the hedging of diesel cost, interest rates and weather events.

    View more

  • Module content:

    Price and production function analysis. Input -output, input -input and product -product relationships; profit maximization; the production process through time, economies of size; decision making in agriculture under risk and uncertain circumstances; linear programming.

    View more

  • Module content:

    This module reviews the origins and evolution of natural and environmental resource economics and its present-day main paradigms. Sources of externalities and causes of environmental degradation are examined. An introduction to the concepts and methods backing the design and implementation of environmental policies are provided. Economic valuation of natural and environmental resources is introduced.

    View more

Elective modules

  • Module content:

    Integration of agronomic, pedological, botanical, economic and management considerations in crop production systems with a view to sustainable maximum economic yield. The importance of vegetables in Sustainable Development Goals 1 (poverty), 2 (food), 3 (health), 4 (education), and 12 (reduced wastage) will be highlighted in case studies of specific vegetable crops. Practicals will consist out of a trial on the experimental farm and a visit to the Tshwane fresh produce market. 

    View more

  • Module content:

    Economic analyses
    Identification, collection and interpretation process of relevant economic data; the national accounts (i.e. income and production accounts, the national financial account, the balance of payments and input-output tables); economic growth; inflation; employment, unemployment, wages, productivity and income distribution; business cycles; financial indicators; fiscal indicators; social indicators; international comparisons; relationships between economic time series - regression analysis; long-term future studies and scenario analysis; overall assessment of the South African economy from 1994 onwards.

    View more

  • Module content:

    The organised nursery industry in South Africa. Principles: seed production; seed germination; rooting of cuttings; budding and grafting; propagation using specialised organs; micro propagation (tissue culturing). Practices: Greenhouse construction, lighting in the nursery; cooling and heating; soil-based and soil-less growing media; container types; irrigation and fertilisation; growth manipulation; pest and disease management. Management, economic and marketing aspects of a typical nursery operation. Students will get hands-on experience and will visit nurseries.

    View more

  • Module content:

    Supervised learning.  Linear and non-linear regression. Ordinary least squares and maximum likelihood estimation. Violations of the assumptions, residual analysis. Cross validation. Statistical inference. Bootstrap inference. Supporting mathematical concepts. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.

    View more

  • Module content:

    Stationary and non-stationary univariate time series. Properties of ARIMA processes. Identification, estimation and diagnostic testing of a time series models. Forecasting. Multivariate time series. Supervised learning: introduction to generalised linear models.  Modelling of binary response variables, logistic regression. Supporting mathematical concepts. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.

    View more

  • Module content:

    Data exploration. Data wrangling. Statistical coding. Algorithmic thinking.  Sampling: basic techniques in probability, non-probability, and resampling methods. Text mining and analytics. Machine learning: classification and clustering. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.

    View more

  • Module content:

    The influence of biotic and abiotic factors on the productivity of different strata and components of natural pastures. This will enable the student to advise users, with the necessary motivation, on the appropriate use of these strata and components and will form a basis for further research on this system. The principles of veld management s and the influence of management practices on sustainable animal production from natural pastures. This will enable the student to advise users on veld management and veld management principles. It will also form a basis for further research on veld management.

    View more

  • Module content:

    The establishment and use of planted pastures species and fodder crops and the
    conservation of fodder. This will enable students to advise users on establishment and utilization of planted pastures species as well as farmers on the production,
    conservation and optimum use of fodder. This will also form a basis for further research on planted pastures.

    View more

  • Module content:

    Introductory aspects of wildlife conservation, habitat management, wildlife nutrition and keeping wildlife in zoological gardens.

    View more


The information published here is subject to change and may be amended after the publication of this information. The General Regulations (G Regulations) apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the General Rules section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.

Copyright © University of Pretoria 2024. All rights reserved.

FAQ's Email Us Virtual Campus Share Cookie Preferences