Code | Faculty | Department |
---|---|---|
02133274 | Faculty of Natural and Agricultural Sciences | Department: Statistics |
Credits | Duration | NQF level |
---|---|---|
Minimum duration of study: 3 years | Total credits: 420 | NQF level: 07 |
Important information for all prospective students for 2023
The admission requirements below apply to all who apply for admission to the University of Pretoria with a National Senior Certificate (NSC) and Independent Examination Board (IEB) qualifications. Click here for this Faculty Brochure.
Minimum requirements | ||
Achievement level | ||
English Home Language or English First Additional Language | Mathematics | APS |
NSC/IEB | NSC/IEB | |
5 | 6 | 34 |
Life Orientation is excluded when calculating the APS.
You will be considered for final admission to degree studies if space allows, and if you have a National Senior Certificate (NSC) or equivalent qualification with admission to bachelor’s degree studies, and comply with the minimum subject requirements as well as the APS requirements of your chosen programme.
Applicants with qualifications other than the abovementioned should refer to the Brochure: Undergraduate Programme Information 2023: Qualifications other than the NSC and IEB, available at click here.
International students: Click here.
Transferring students
A transferring student is a student who, at the time of applying at the University of Pretoria (UP) is/was a registered student at another tertiary institution. A transferring student will be considered for admission based on NSC or equivalent qualification and previous academic performance. Students who have been dismissed from other institutions due to poor academic performance will not be considered for admission to UP.
Closing dates: Same as above.
Returning students
A returning student is a student who, at the time of application for a degree programme is/was a registered student at UP, and wants to transfer to another degree at UP. A returning student will be considered for admission based on NSC or equivalent qualification and previous academic performance.
Note:
Closing date for applications from returning students
Unless capacity allows for an extension of the closing date, applications from returning students must be submitted before the end of August via your UP Student Centre.
Candidates who do not comply with the minimum admission requirements for BSc (Mathematical Statistics), may be considered for admission to the BSc – Extended programme – Mathematical Sciences, which requires an additional year of study.
Please note: Progression from the BSc – Extended programme – Mathematical Sciences to the mathematics-intensive programmes will be considered only for students who obtained a GPA of 65% in all their first-year modules. Students who pass all first-year modules will be advised on alternative academic pathways.
BSc – Extended Programme – Mathematical Sciences Minimum requirements | ||
Achievement level | ||
English Home Language or English First Additional Language | Mathematics | APS |
NSC/IEB | NSC/IEB | |
4 | 5 | 28 |
Note:
*The BSc – Extended programmes are not available for students who meet all the requirements for the corresponding mainstream programme.
*Please note that only students who apply in their final NSC or equivalent qualification year will be considered for admission into any of the BSc – Extended programmes. Students who are upgrading or taking a gap year will not be considered.
1.1 Requirements for specific modules
A candidate who:
or
or
1.2 Fundamental modules
A student will be promoted to the following year of study if he or she passed 100 credits of the prescribed credits for a year of study, unless the Dean on the recommendation of the relevant head of department decides otherwise. A student who does not comply with the requirements for promotion to the following year of study, retains the credit for the modules already passed and may be admitted by the Dean, on recommendation of the relevant head of department, to modules of the following year of study to a maximum of 48 credits, provided that it will fit in with both the lecture and examination timetable.
General promotion requirements in the faculty
All students whose academic progress is not acceptable can be suspended from further studies.
University of Pretoria Programme Qualification Mix (PQM) verification project
The higher education sector has undergone an extensive alignment to the Higher Education Qualification Sub-Framework (HEQF) across all institutions in South Africa. In order to comply with the HEQSF, all institutions are legally required to participate in a national initiative led by regulatory bodies such as the Department of Higher Education and Training (DHET), the Council on Higher Education (CHE), and the South African Qualifications Authority (SAQA). The University of Pretoria is presently engaged in an ongoing effort to align its qualifications and programmes with the HEQSF criteria. Current and prospective students should take note that changes to UP qualification and programme names, may occur as a result of the HEQSF initiative. Students are advised to contact their faculties if they have any questions.
Minimum credits: 140
Fundamental = 14
Core = 64
Elective = 62
Electives (with credits shown in brackets) should be chosen from the following:
Module content:
Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.
Module content:
Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.
Module content:
The module aims to equip students with the ability to cope with the reading and writing demands of scientific disciplines.
Module content:
Characterisation of a set of measurements: Graphical and numerical methods. Random sampling. Probability theory. Discrete and continuous random variables. Probability distributions. Generating functions and moments.
Module content:
Sampling distributions and the central limit theorem. Statistical inference: Point and interval estimation. Hypothesis testing with applications in one and two-sample cases. Introductory methods for: Linear regression and correlation, analysis of variance, categorical data analysis and non-parametric statistics. Identification, use, evaluation and interpretation of statistical computer packages and statistical techniques.
Module content:
*This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218 and WTW 220). Students will not be credited for more than one of the following modules for their degree: WTW 114, WTW 158, WTW 134, WTW 165.
Functions, limits and continuity. Differential calculus of single variable functions, rate of change, graph sketching, applications. The mean value theorem, the rule of L'Hospital. Definite and indefinite integrals, evaluating definite integrals using anti-derivatives, the substitution rule.
Module content:
*Students will not be credited for more than one of the following modules for their degree:
WTW 124, WTW 146, WTW 148 and WTW 164. This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218, WTW 211 and WTW 220).
The vector space Rn, vector algebra with applications to lines and planes, matrix algebra, systems of linear equations, determinants. Complex numbers and factorisation of polynomials. Integration techniques and applications of integration. The formal definition of a limit. The fundamental theorem of Calculus and applications. Vector functions and quadratic curves.
Module content:
Fundamental concepts of modern operating systems in terms of their structure and the mechanisms they use are studied in this module. After completing this module, students will have gained, as outcomes, knowledge of real time, multimedia and multiple processor systems, as these will be defined and analysed. In addition, students will have gained knowledge on modern design issues of process management, deadlock and concurrency control, memory management, input/output management, file systems and operating system security. In order to experience a hands-on approach to the knowledge students would have gained from studying the abovementioned concepts, students will have produced a number of practical implementations of these concepts using the Windows and Linux operating systems.
Module content:
This module introduces imperative computer programming, which is a fundamental building block of computer science. The process of constructing a program for solving a given problem, of editing it, compiling (both manually and automatically), running and debugging it, is covered from the beginning. The aim is to master the elements of a programming language and be able to put them together in order to construct programs using types, control structures, arrays, functions and libraries. An introduction to object orientation will be given. After completing this module, the student should understand the fundamental elements of a program, the importance of good program design and user-friendly interfaces. Students should be able to conduct basic program analysis and write complete elementary programs.
Module content:
This module introduces concepts and terminology related to the computer science discipline. General topics covered include the history of computing, machine level representation of data, Boolean logic and gates, basic computer systems organisation, algorithms and complexity and automata theory. The module also introduces some of the subdisciplines of computer science, such as computer networks, database systems, compilers, information security and intelligent systems. The module also focues on modelling of algorithms.
Module content:
This module deals with the core principles of economics. A distinction between macroeconomics and microeconomics is made. A discussion of the market system and circular flow of goods, services and money is followed by a section dealing with microeconomic principles, including demand and supply analysis, consumer behaviour and utility maximisation, production and the costs thereof, and the different market models and firm behaviour. Labour market institutions and issues, wage determination, as well as income inequality and poverty are also addressed. A section of money, banking, interest rates and monetary policy concludes the course.
Module content:
This module deals with the core principles of economics, especially macroeconomic measurement the private and public sectors of the South African economy receive attention, while basic macroeconomic relationships and the measurement of domestic output and national income are discussed. Aggregate demand and supply analysis stands core to this course which is also used to introduce students to the analysis of economic growth, unemployment and inflation. The microeconomics of government is addressed in a separate section, followed by a section on international economics, focusing on international trade, exchange rates and the balance of payments. The economics of developing countries and South Africa in the global economy conclude the course.
Module content:
*Only for BSc (Mathematical Statistics. Construction Management, Real Estate and Quantity Surveying) and BEng (Industrial Engineering) students.
Purpose and functioning of financial management. Basic financial management concepts. Accounting concepts and the use of the basic accounting equation to describe the financial position of a business. Recording of financial transactions. Relationship between cash and accounting profit. Internal control and the management of cash. Debtors and short-term investments. Stock valuation models. Depreciation. Financial statements of a business. Distinguishing characteristics of the different forms of businesses. Overview of financial markets and the role of financial institutions. Risk and return characteristics of various financial instruments. Issuing ordinary shares and debt instruments.
Module content:
*Only for students in BSc (Actuarial and Financial Mathematics), BSc (Mathematics), BSc (Applied Mathematics), BSc (Mathematical Statistics), BSc Extended programme – Mathematical Sciences and BCom (Statistics) who comply with the set prerequisites.
Key principles of financial management. Company ownership. Taxation. Introduction to financial statements. Structure of financial statements. Depreciation and reserves. Preparing financial statements. Group financial statements and insurance company financial statements. Interpretation of financial statements. Limitation of financial statements. Issue of share capital.
Module content:
Financial instruments. Use of financial derivatives. Financial institutions. Time value of money. Component cost of capital. Weighted average cost of capital. Capital structure and dividend policy. Capital project appraisal. Evaluating risky investments.
Module content:
Professionalism, working in multicultural environments, self-development, propositional logic, financial needs.
Module content:
Financial service providers, investment examples including an introduction to mathematics of finance, life insurance examples including an introduction to contingencies, general insurance examples including an introduction to reserving using run-off triangles, personal self-development.
Module content:
Introduction to weather and climate. Climate of South Africa. Urban and rural climate. Meteorological instruments. Motion of the earth. Atmospheric mass and pressure. Energy and heat budget. Moisture in the atmosphere. Cloud development. Climate change. ENSO. Electromagnetic spectrum and remote sensing in meteorology. Synoptic weather systems of South Africa.
Module content:
Propositional logic: truth tables, logical equivalence, implication, arguments. Mathematical induction and well-ordering principle. Introduction to set theory. Counting techniques: elementary probability, multiplication and addition rules, permutations and combinations, binomial theorem, inclusion-exclusion rule.
Module content:
Non-linear equations, numerical integration, initial value problems for differential equations, systems of linear equations. Algorithms for elementary numerical techniques are derived and implemented in computer programmes. Error estimates and convergence results are treated.
Module content:
The module serves as an introduction to computer programming as used in science. Modelling of dynamical processes using difference equations; curve fitting and linear programming are studied. Applications are drawn from real-life situations in, among others, finance, economics and ecology.
Module content:
*Students will not be credited for more than one of the following modules for their degree: WTW 162 and WTW 264.
Introduction to the modelling of dynamical processes using elementary differential equations. Solution methods for first order differential equations and analysis of properties of solutions (graphs). Applications to real life situations.
Minimum credits: 140
Core = 108
Elective = 32
Elective Modules (with credits shown in brackets) (Credits = 32)
Note that only WTW 220 or WTW 224 can be credited. WTW 224 is a terminating module for any WTW 300 modules, thus only an option in the insurance and economics stream.
Module content:
Set theory. Probability measure functions. Random variables. Distribution functions. Probability mass functions. Density functions. Expected values. Moments. Moment generating functions. Special probability distributions: Bernoulli, binomial, hypergeometric, geometric, negative binomial, Poisson, Poisson process, discrete uniform, uniform, gamma,exponential, Weibull, Pareto, normal. Joint distributions: Multinomial, extended hypergeometric, joint continuous distributions. Marginal distributions. Independent random variables. Conditional distributions. Covariance, correlation. Conditional expected values. Transformation of random variables: Convolution formula. Order statistics. Stochastic convergence: Convergence in distribution. Central limit theorem. Practical applications. Practical statistical modelling and analysis using statistical computer packages and the interpretation of the output.
Module content:
Introductory machine learning concepts. Data base design and use. Data preparation and extraction. Statistical modelling using data base structures. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.
Module content:
Stochastic convergence: Asymptotic normal distributions, convergence in probability. Statistics and sampling distributions: Chi-squared distribution. Distribution of the sample mean and sample variance for random samples from a normal population. T-distribution. F-distribution. Beta distribution. Point estimation: Method of moments. Maximum likelihood estimation. Unbiased estimators. Uniform minimum variance unbiased estimators. Cramer-Rao inequality. Efficiency. Consistency. Asymptotic relative efficiency.
Bayes estimators. Sufficient statistics. Completeness. The exponential class. Confidence intervals. Test of statistical hypotheses. Reliability and survival distributions. Practical applications. Practical statistical modelling and analysis using statistical computer packages and the interpretation of the output.
Module content:
This is an introduction to linear algebra on Rn. Matrices and linear equations, linear combinations and spans, linear independence, subspaces, basis and dimension, eigenvalues, eigenvectors, similarity and diagonalisation of matrices, linear transformations.
Module content:
Calculus of multivariable functions, directional derivatives. Extrema and Lagrange multipliers. Multiple integrals, polar, cylindrical and spherical coordinates.
Module content:
*This module is recommended as an elective only for students who intend to enrol for WTW 310 and/or WTW 320. Students will not be credited for more than one of the following modules for their degree: WTW 220 and WTW 224.
Properties of real numbers. Analysis of sequences and series of real numbers. Power series and theorems of convergence. The Bolzano-Weierstrass theorem. The intermediate value theorem and analysis of real-valued functions on an interval. The Riemann integral: Existence and properties of the interval.
Module content:
Abstract vector spaces, change of basis, matrix representation of linear transformations, orthogonality, diagonalisability of symmetric matrices, some applications.
Module content:
*This module does not lead to admission to WTW 310 or WTW 320. Students will not be credited for more than one of the following modules for their degree: WTW 220 and WTW 224.
Sequences of real numbers: convergence and monotone sequences. Series of real numbers: convergence, integral test, comparison tests, alternating series, absolute convergence, ratio and root tests. Power series: representation of functions as power series, Taylor and Maclaurin series. Application to series solutions of differential equations.
Module content:
Macroeconomics
From Wall and Bay Street to Diagonal Street: a thorough understanding of the mechanisms and theories explaining the workings of the economy is essential. Macroeconomic insight is provided on the real market, the money market, two market equilibrium, monetarism, growth theory, cyclical analysis, inflation, Keynesian general equilibrium analysis and fiscal and monetary policy issues.
Module content:
Microeconomics
Microeconomic insight is provided into: consumer and producer theory, general microeconomic equilibrium, Pareto-optimality and optimality of the price mechanism, welfare economics, market forms and the production structure of South Africa. Statistic and econometric analysis of microeconomic issues.
Module content:
Principles of actuarial modelling, cash-flow models, the time value of money, interest rates, discounting and accumulating, level annuities, deferred and increasing annuities, equations of value.
Module content:
Fundamentals of survival models, select and ultimate life tables, Assurance and annuity functions, basic calculation of premiums and reserves, principles of pricing and reserving.
Module content:
Principles of actuarial modelling, cash-flow models, the time value of money, interest rates, discounting and accumulating, level annuities, deferred and increasing annuities, equations of value, loan schedules, project appraisal, elementary compound interest problems, term structure of interest rates.
Module content:
Vectors and geometry. Calculus of vector functions with applications to differential geometry, kinematics and dynamics. Vector analysis, including vector fields, line integrals of scalar and vector fields, conservative vector fields, surfaces and surface integrals, the Theorems of Green, Gauss and Stokes with applications.
Module content:
*Students will not be credited for both WTW 162 and WTW 264 or both WTW 264 and WTW 286 for their degree.
Theory and solution methods for ordinary differential equations and initial value problems: separable and linear first order equations, linear equations of higher order, systems of linear equations. Laplace transform.
Module content:
Setting up and solving recurrence relations. Equivalence and partial order relations. Graphs: paths, cycles, trees, isomorphism. Graph algorithms: Kruskal, Prim, Fleury. Finite state automata.
Module content:
*Students will not be credited for more than one of the modules for their degree: WTW 264, WTW 286
Theory and solution methods for ordinary differential equations and initial value problems: separable and linear first-order equations, linear equations of higher order, systems of linear equations. Application to mathematical models. Numerical methods applied to nonlinear systems.Qualitative analysis of linear systems.
Minimum credits: 140
Core = 86
Elective = 54
Additional Information:
Module content:
Stationary and non-stationary univariate time series. Properties of ARIMA processes. Identification, estimation and diagnostic testing of a time series models. Forecasting. Multivariate time series. Supervised learning: introduction to generalised linear models. Modelling of binary response variables, logistic regression. Supporting mathematical concepts. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.
Module content:
Data exploration. Data wrangling. Statistical coding. Algorithmic thinking. Sampling: basic techniques in probability, non-probability, and resampling methods. Text mining and analytics. Machine learning: classification and clustering. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.
Module content:
Multivariate statistical distributions: Moments of a distribution, moment generating functions, independence. Multivariate normal distribution: Conditional distributions, partial and multiple correlations. Distribution of quadratic forms in normal variables. Multivariate normal samples: Estimation of the mean vector and covariance matrix, estimation of correlation coefficients, distribution of the sample mean, sample covariance matrix. Principal component analysis.The linear model: Models of full rank, least squares estimators, test of hypotheses.The generalised linear model: Exponential family mean and variance, link functions, deviance and residual analysis, test statistics, log- linear and logit models. Practical applications: Practical statistical modelling and analysis using statistical computer packages and interpretation of the output.
Module content:
Definition of a stochastic process. Stationarity. Covariance stationary. Markov property. Random walk. Brownian motion. Markov chains. Chapman-Kolmogorov equations. Recurrent and transient states. First passage time. Occupation times. Markov jump processes. Poisson process. Birth and death processes. Structures of processes. Structure of the time-homogeneous Markov jump process. Applications in insurance. Practical statistical modelling, analysis and simulation using statistical computer packages and the interpretation of the output.
Module content:
Public finance
Role of government in the economy. Welfare economics and theory of optimality. Ways of correcting market failures. Government expenditure theories, models and programmes. Government revenue. Models on taxation, effects of taxation on the economy. Assessment of taxation from an optimality and efficiency point of view. South African perspective on public finance.
Module content:
Poverty and inequality are among the greatest contemporary challenges of economic development in the World. This course provides an overview of different economic explanations of underdevelopment and policy options to fostering household and individual welfare. We will investigate key development issues such as poverty, inequality, migration, the role of institutions (policy and governance), among others, as they are encountered by developing countries in general and South Africa in particular. During the course, we put special emphasis on the interplay between theory and data.
Module content:
Economic analyses
Identification, collection and interpretation process of relevant economic data; the national accounts (i.e. income and production accounts, the national financial account, the balance of payments and input-output tables); economic growth; inflation; employment, unemployment, wages, productivity and income distribution; business cycles; financial indicators; fiscal indicators; social indicators; international comparisons; relationships between economic time series - regression analysis; long-term future studies and scenario analysis; overall assessment of the South African economy from 1994 onwards.
Module content:
Economic policy and development: Capita select
The course provides an introduction to growth economics and also to some topics on development economics. Firstly, historical evidence is covered and then the canonical Solow growth model and some of its empirical applications (human capital and convergence). Secondly, the new growth theory (the AK and the Romer models of endogenous growth) are covered. Some of the development topics to be covered include technology transfer, social infrastructure and natural resources.
Module content:
Survival models and the life table, estimating the lifetime distribution, proportional hazard models, the binomial and Poisson models, exposed to risk, graduation and statistical tests, methods of graduation.
Module content:
Bayes estimation. Loss distributions. Reinsurance. Risk models. Ruin theory. Credibility theory. Extreme value theory. Copulas. Practical statistical modelling and analysis using statistical computer packages.
Module content:
Topology of finite dimensional spaces: Open and closed sets, compactness, connectedness and completeness. Theorems of Bolzano-Weierstrass and Heine-Borel. Properties of continuous functions and applications. Integration theory for functions of one real variable. Sequences of functions.
Module content:
Series of functions, power series and Taylor series. Complex functions, Cauchy- Riemann equations, Cauchy's theorem and integral formulas. Laurent series, residue theorem and calculation of real integrals using residues.
Module content:
Mean variance portfolio theory. Market equilibrium models such as the capital asset pricing model. Factor models and arbitrage pricing theory. Measures of investment risk. Efficient market hypothesis. Stochastic models of security prices
Module content:
Discrete time financial models: Arbitrage and hedging; the binomial model. Continuous time financial models: The Black-Scholes formula; pricing of options and the other derivatives; interest rate models; numerical procedures.
Module content:
Group theory: Definition, examples, elementary properties, subgroups, permutation groups, isomorphism, order, cyclic groups, homomorphisms, factor groups. Ring theory: Definition, examples, elementary properties, ideals, homomorphisms, factor rings, polynomial rings, factorisation of polynomials. Field extensions, applications to straight-edge and compass constructions.
Module content:
Matrix exponential function: homogeneous and non-homogeneous linear systems of differential equations. Qualitative analysis of systems: phase portraits, stability, linearisation, energy method and Liapunov's method. Introduction to chaotic systems. Application to real life problems.
Module content:
Direct methods for the numerical solution of systems of linear equations, pivoting strategies. Iterative methods for solving systems of linear equations and eigenvalue problems. Iterative methods for solving systems of nonlinear equations. Introduction to optimization. Algorithms for the considered numerical methods are derived and implemented in computer programmes. Complexity of computation is investigated. Error estimates and convergence results are proved.
Module content:
Conservation laws and modelling. Fourier analysis. Heat equation, wave equation and Laplace's equation. Solution methods including Fourier series. Energy and other qualitative methods.
Module content:
Kinematics of a continuum: Configurations, spatial and material description of motion. Conservation laws. Analysis of stress, strain and rate of deformation. Linear constitutive equations. Applications: Vibration of beams, equilibrium problems in elasticity and special cases of fluid motion.
Module content:
Axiomatic development of neutral, Euclidean and hyperbolic geometry. Using models of geometries to show that the parallel postulate is independent of the other postulates of Euclid.
Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App