Code | Faculty | Department |
---|---|---|
02133023 | Faculty of Natural and Agricultural Sciences | Department: Geology |
Credits | Duration | NQF level |
---|---|---|
Minimum duration of study: 3 years | Total credits: 428 | NQF level: 07 |
Those students registered for the BSc (Geology) programme and who have opted to select any of the dual major fields of study offered within this programme must take note of the following:
Bachelor of Science
Geology
Important information for all prospective students for 2025
The admission requirements below apply to all who apply for admission to the University of Pretoria with a National Senior Certificate (NSC) and Independent Examination Board (IEB) qualifications. Click here for this Faculty Brochure.
Minimum requirements | |||
Achievement level | |||
English Home Language or English First Additional Language | Mathematics | Physical Sciences | APS |
NSC/IEB | NSC/IEB | NSC/IEB | |
5 | 5 | 5 | 34 |
Life Orientation is excluded when calculating the APS.
Applicants currently in Grade 12 must apply with their final Grade 11 (or equivalent) results.
Applicants who have completed Grade 12 must apply with their final NSC or equivalent qualification results.
Please note that meeting the minimum academic requirements does not guarantee admission.
Successful candidates will be notified once admitted or conditionally admitted.
Unsuccessful candidates will be notified after 30 June.
Applicants should check their application status regularly on the UP Student Portal at click here.
Applicants with qualifications other than the abovementioned should refer to the International undergraduate prospectus 2025: Applicants with a school leaving certificate not issued by Umalusi (South Africa), available at click here.
International students: Click here.
Transferring students
A transferring student is a student who, at the time of applying at the University of Pretoria (UP) is/was a registered student at another tertiary institution. A transferring student will be considered for admission based on NSC or equivalent qualification and previous academic performance. Students who have been dismissed from other institutions due to poor academic performance will not be considered for admission to UP.
Closing dates: Same as above.
Returning students
A returning student is a student who, at the time of application for a degree programme is/was a registered student at UP, and wants to transfer to another degree at UP. A returning student will be considered for admission based on NSC or equivalent qualification and previous academic performance.
Note:
Closing date for applications from returning students
Unless capacity allows for an extension of the closing date, applications from returning students must be submitted before the end of August via your UP Student Centre.
1.1 Requirements for specific modules
A candidate who:
or
or
1.2 Fundamental modules
A student will be promoted to the following year of study if he or she passed 100 credits of the prescribed credits for a year of study, unless the Dean on the recommendation of the relevant head of department decides otherwise. A student who does not comply with the requirements for promotion to the following year of study, retains the credit for the modules already passed and may be admitted by the Dean, on recommendation of the relevant head of department, to modules of the following year of study to a maximum of 48 credits, provided that it will fit in with both the lecture and examination timetable.
General promotion requirements in the faculty
All students whose academic progress is not acceptable can be suspended from further studies.
Minimum credits: 144
Fundamental = 14
Core = 130
Module content:
Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.
Module content:
Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.
Module content:
The module aims to equip students with the ability to cope with the reading and writing demands of scientific disciplines.
Module content:
Simple statistical analysis: Data collection and analysis: Samples, tabulation, graphical representation, describing location, spread and skewness. Introductory probability and distribution theory. Sampling distributions and the central limit theorem. Statistical inference: Basic principles, estimation and testing in the one- and two-sample cases (parametric and non-parametric). Introduction to experimental design. One- and twoway designs, randomised blocks. Multiple statistical analysis: Bivariate data sets: Curve fitting (linear and non-linear), growth curves. Statistical inference in the simple regression case. Categorical analysis: Testing goodness of fit and contingency tables. Multiple regression and correlation: Fitting and testing of models. Residual analysis. Computer literacy: Use of computer packages in data analysis and report writing.
Module content:
General introduction to inorganic, analytical and physical chemistry. Atomic structure and periodicity. Molecular structure and chemical bonding using the VSEPR-model. Nomenclature of inorganic ions and compounds. Classification of reactions: precipitation, acid-base, redox reactions and gas-forming reactions. Mole concept and stoichiometric calculations concerning chemical formulas and chemical reactions. Principles of reactivity: energy and chemical reactions. Physical behaviour gases, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to chemical kinetics.
Module content:
Theory: General physical-analytical chemistry: Chemical equilibrium, acids and bases, buffers, solubility equilibrium, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and aminoacids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.
Module content:
Note: Students cannot register for both GGY 166 and GGY 168.
Investigating southern African landscapes and placing them in a theoretical and global context. The geomorphological evolution of southern Africa. Introduction to the concepts of Geomorphology and its relationships with other physical sciences (e.g. meteorology, climatology, geology, hydrology and biology). The processes and controls of landform and landscape evolution. Tutorial exercises cover basic techniques of geomorphological analysis, and topical issues in Geomorphology.
Module content:
Solar system; structure of solid matter; minerals and rocks; introduction to symmetry and crystallography; important minerals and solid solutions; rock cycle; classification of rocks. External geological processes (gravity, water, wind, sea, ice) and their products (including geomorphology). Internal structure of the earth. The dynamic earth – volcanism, earthquakes, mountain building – the theory of plate tectonics. Geological processes (magmatism, metamorphism, sedimentology, structural geology) in a plate tectonic context. Geological maps and mineral and rock specimens. Interaction between man and the environment, and nature of anthropogenic climate change.
Module content:
This module will give an overview of earth history, from the Archaean to the present. Important concepts such as the principles of stratigraphy and stratigraphic nomenclature, geological dating and international and South African time scales will be introduced. A brief introduction to the principles of palaeontology will be given, along with short descriptions of major fossil groups, fossil forms, ecology and geological meaning. In the South African context, the major stratigraphic units, intrusions and tectonic/metamorphic events will be detailed, along with related rock types, fossil contents, genesis and economic commodities. Anthropogenic effects on the environment and their mitigation. Practical work will focus on the interpretation of geological maps and profiles.
Module content:
History, present and future of cartography. Introductory geodesy: shape of the earth, graticule and grids, datum definition, elementary map projection theory, spherical calculations. Representation of geographical data on maps: Cartographic design, cartographic abstraction, levels of measurement and visual variables. Semiotics for cartography: signs, sign systems, map semantics and syntactics, explicit and implicit meaning of maps (map pragmatics). Critique maps of indicators to measure United Nations Sustainable Development Goals in South Africa.
Module content:
SI-units. Significant figures. Waves: intensity, superposition, interference, standing waves, resonance, beats, Doppler. Geometrical optics: Reflection, refraction, mirrors, thin lenses, instruments. Physical optics: Young-interference, coherence, diffraction, polarisation. Hydrostatics and dynamics: density, pressure, Archimedes’ principle, continuity, Bernoulli. Heat: temperature, specific heat, expansion, heat transfer. Vectors. Kinematics of a point: Relative, projectile, and circular motion. Dynamics: Newton’s laws, friction. Work: point masses, gasses (ideal gas law), gravitation, spring, power. Kinetic energy: Conservative forces, gravitation, spring. Conservation of energy. Conservation of momentum. Impulse and collisions. System of particles: Centre of mass, Newton’s laws. Rotation: torque, conservation of angular momentum, equilibrium, centre of gravity.
Module content:
*Students will not be credited for more than one of the following modules for their degree: WTW 134, WTW 165, WTW 114, WTW 158. WTW 134 does not lead to admission to Mathematics at 200 level and is intended for students who require Mathematics at 100 level only. WTW 134 is offered as WTW 165 in the second semester only to students who have applied in the first semester of the current year for the approximately 65 MBChB, or the 5-6 BChD places becoming available in the second semester and who were therefore enrolled for MGW 112 in the first semester of the current year.
Functions, derivatives, interpretation of the derivative, rules of differentiation, applications of differentiation, integration, interpretation of the definite integral, applications of integration. Matrices, solutions of systems of equations. All topics are studied in the context of applications.
Minimum credits: 134
Core = 94
Elective = 48
Additional information:
Students must select at least 40 credits of electives, bearing the following in mind:
Module content:
Introduction to Geographic Information Systems (GIS), theoretical concepts and applications of GIS. The focus will be on the GIS process of data input, data analysis, data output and associated technologies. This module provides the foundations for more advanced GIS and Geoinformatics topics. Practical assessments and a mini-project make use of South African and African examples and foster learning and application of concepts aligned to the UN Sustainable Development Goals.
Module content:
Soil is a finite resource and with the global challenges we are facing, it is more important than ever to understand and sustainably manage soil. Our daily lives are impacted by soil in several ways, including the food we eat, the water we drink, and the environment we live in. In this Introductory Soils module, we will look at how basic and more advanced abiotic and biotic soil properties impact us and the larger environment. We will also examine the fundamental principles behind sustainable soil use management.
Module content:
This module introduces the basic principles and concepts of sedimentology. Building on existing knowledge on stratigraphy and mineralogy from the first year, sediments will be followed from their origin (precursor rocks that experienced weathering and erosion) through diverse modes of transport to their final place of deposition on land and in the sea. The formation of sedimentary textures and structures and their interpretation in terms of sedimentary environments, as well as post-depositional diagenetic processes, will be discussed. Furthermore, some economic aspects of sedimentology will be covered, such as placer deposits and conventional and renewable energy sources. Later parts in the course will concentrate on basin-forming processes and provide an overview of modern basin analysis. An introduction to sequence stratigraphy and sedimentary geochemistry will be offered as part of this, both of which are important applications of sedimentology for interpreting sea level variations and climatic changes.
Practical sessions: During the hands-on practicals, participants will learn how to classify rocks using a wide spectrum of different techniques while developing an appreciation of the processes that result in the formation of sediments, sedimentary rocks, and entire sedimentary sequences.
This will include presenting the fundamentals of optical mineralogy and how to examine some of the major minerals that comprise sedimentary rocks in thin sections using transmitted light microscopy. Further aspects of the practical sessions will focus on grain size/sieve analysis and basic statistical analysis. Sedimentary geochemistry will be used to identify the degrees of alteration and help interpret climatic and environmental conditions during the time of sediment emplacement. Furthermore, field data acquisition from sedimentary rocks, interpretation of sedimentary profiles and core logs, and writing of reports and oral presentations will be practiced.
Module content:
Classification and nomenclature of igneous rocks. The nature of silicate melts; physical and chemical factors influencing crystallisation and textures of igneous rocks. Phase diagrams, fractional crystallisation and partial melting. Trace elements and isotopes, and their use in petrogenetic studies. Global distribution of magmatism and its origin. Mid-oceanic ridges, active continental margins, intraplate magmatism. Classification of metamorphic rocks. Anatexis, migmatite and granite; eclogite. Metamorphic textures. PT-time loops. Metamorphism in various plate tectonic environments.
Module content:
This module aims to provide students with a working knowledge and skills to learn methods and techniques for collecting, processing and analysing remotely sensed data. Throughout the module, emphasis will be placed on image processing, image analysis, image classification, remote sensing and applications of remote sensing in geographical analysis and environmental monitoring. The module is composed of lectures, readings, practical exercises research tasks and a project or assignments of at least 64 notional hours. In particular, the practical exercises and research tasks incorporate South African examples using satellite remotely-sensed data, as well as field spectral data measurements, to promote understanding of the state of land cover and land use types (e.g. spanning agricultural resources, water resources, urbanization) and how changes over time could impact on the changing climate in accordance with the United Nation’s Sustainable Development Goals.
Module content:
Analysis of variance: Multi-way classification. Testing of model assumptions, graphics. Multiple comparisons. Fixed, stochastic and mixed effect models. Block experiments. Estimation of effects. Experimental design: Principles of experimental design. Factorial experiments: Confounding, single degree of freedom approach, hierarchical classification. Balanced and unbalanced designs. Split-plot designs. Analysis of covariance. Computer literacy: Writing and interpretation of computer programmes. Report writing.
Module content:
Theory: Classical chemical thermodynamics, gases, first and second law and applications, physical changes of pure materials and simple compounds. Phase rule: Chemical reactions, chemical kinetics, rates of reactions.
Module content:
Statistical evaluation of data in line with ethical practice, gravimetric analysis, aqueous solution chemistry, chemical equilibrium, precipitation-, neutralisation- and complex formation titrations, redox titrations, potentiometric methods, introduction to electrochemistry. Examples throughout the course demonstrate the relevance of the theory to meeting the sustainable development goals of clean water and clean, affordable energy.
Module content:
Resonance, conjugation and aromaticity. Acidity and basicity. Introduction to 13C NMR spectroscopy. Electrophilic addition: alkenes. Nucleophilic substitution, elimination, addition: alkyl halides, alcohols, ethers, epoxides, carbonyl compounds: ketones, aldehydes, carboxylic acids and their derivatives Training in an ethical approach to safety that protects self, others and the environment is integral to the practical component of the course.
Module content:
Atomic structure, structure of solids (ionic model). Coordination chemistry of transition metals: Oxidation states of transition metals, ligands, stereochemistry, crystal field theory, consequences of d-orbital splitting, electrochemical properties of transition metals in aqueous solution. Fundamentals of spectroscopy and introduction to IR spectroscopy. During practical training students learn to acquire and report data ethically. Practical training also deals with the misuse of chemicals and appropriate waste disposal to protect the environment and meet the UN sustainable development goals.
Module content:
Physical processes that influence the earth’s surface and management. Specific processes and their interaction in themes such as weathering; soil erosion; slope, mass movement and periglacial processes. Practical laboratory exercises and assignments are based on the themes covered in the module theory component.
Module content:
The nature of geographical data and measurement.Application of statistics in the geographical domain. Probability, probability distributions and densities, expected values and variances, Central Limit theorem. Sampling techniques. Exploratory data analysis, descriptive statistics, statistical estimation, hypothesis testing, correlation analysis and regression analysis. Examples used throughout the course are drawn from South African and African case studies and taught within the framework of the UN Sustainable Development Goals.
Module content:
Adjustment and use of following instruments: Plane table, level, compass and theodolite. Elementary site surveying and leveling, tachometry. Definition of survey. Co-ordinate systems and bearing. Connections and polars. Methods of determining points. Elevation. Tachometry.
Minimum credits: 144
Core = 78
Elective = 66
Additional information:
Students must select 72 credits of electives, bearing in mind the following:
Module content:
This module details the genesis and exploitation of major ore deposits, with an emphasis on South African examples. The processes through which ore deposits are formed and modified will be discussed, highlighting the relevance of sedimentary, metamorphic and igneous processes in the genesis of world-class ore bodies. The module will also address the methods of mining commonly used, and the international commodity market, including a brief introduction to ore reserve estimation and the evaluation of potential ore deposits. The section of the module involving mineral exploration and mining will emphasize the need of pursuing a sustainable mineral resources development mindset, by addressing and sharing ideas on the impact that mining has on environmental, social and economic issues including community welfare, impact of mining on land use, and rehabilitation post mining.
Module content:
This is an integrated theoretical and practical module dealing with the principles and analysis of deformed rocks, as well as the movement of fluids like water and air through these rocks and other media such as soils and karst. Faults, folds and shear zones form and behave differently in terms of seismology and hydraulic behaviour in the vadose (unsaturated) and phreatic (saturated) zones. Underground water feeds rivers and biota for survival. It is, however, also susceptible to contamination and pollution causing changes in its quality due to many natural and anthropogenic activities. In countries like South Africa, where fractured aquifers dominate, structural geology is the first step in understanding this significant source of water.
Module content:
Theory: Molecular quantum mechanics. Introduction: Shortcomings of classical physics, dynamics of microscopic systems, quantum mechanical principles, translational, vibrational and rotational movement. Atomic structure and spectra: Atomic hydrogen, multiple electron systems, spectra of complex atoms, molecular structure, the hydrogen molecule ion, diatomic and polyatomic molecules, structure and properties of molecules. Molecules in motion: Viscosity, diffusion, mobility. Surface chemistry: Physisorption and chemisorption, adsorption isotherms, surface tension, heterogeneous catalytic rate reactions, capillarity.
Module content:
Separation methods: Extraction, multiple extraction, chromatographic systems. Spectroscopy: Construction of instruments, atomic absorption and atomic emission spectrometry, surface analysis techniques. Mass spectrometry. These techniques are discussed in terms of their use in environmental analysis and the value they contribute to meeting the UN sustainable development goals (#3,6 & 11). Instrumental electrochemistry. The relevance of electrochemistry to providing affordable and clean energy (UN SDG#7) is addressed.
Module content:
Theory: NMR spectroscopy: applications. Aromatic chemistry, Synthetic methodology in organic chemistry. Carbon-carbon bond formation: alkylation at nucleophilic carbon sites, aldol and related condensations, Wittig and related reactions, acylation of carbanions (Claisen condensation). Practical: Laboratory sessions are designed to develop the rational thinking behind the design of organic chemistry experiments. An industrial project specifically prepares students for work in SA industry context and honours projects. As part of this practical programme the UN sustainable development goals must be considered in evaluating the best industrial process.
Module content:
Theory: Structure and bonding in inorganic chemistry. Molecular orbital approach, diatomic and polyatomic molecules, three-centre bonds, metal-metal bonds, transition metal complexes, magnetic properties, electronic spectra, acid-base concepts, non-aqueous solvents, special topics.
Module content:
*Note: The content of this module is the same as GGY 361 and students are not allowed to earn credits for both GGY 361 and GGY 363.
Interactions of geomorphic processes within the physical and built environments; themes such as geomorphology and environmental change, slope processes and the environment, geomorphic risks and hazards, soil erosion and conservation, geomorphology in environmental management, applied weathering.
Module content:
Advanced theory and practice of Geographic Information Systems; GIS applications; design and implementation of GIS applications. A project or assignments of at least 64 notional hours. Diverse South African examples will be used to expose the students to various data sources, geospatial analyses, and data representation to support the UN Sustainable Development Goals.
Module content:
Construction of Raster Geovisualisations, spatial model construction and use, multi-criteria decision analysis. Factor analysis: Principle component analysis. Geostatistics: Spatial dependence modelling, ordinary kriging. Markov chains and cellular Automata, combined models. Examples using data from South Africa are implemented. A project or assignment of at least 64 notional hours.
Module content:
Soil chemistry is the study of the chemical behaviour (precipitation, dissolution, sorption, oxidation, reduction, volatilization etc.) of elements and compounds in the soil. Soil exerts a control on nutrient availability and therefore on nutrient cycling (for example the soil-plant system). The growing anthropogenic pressure on soil and the larger environment means a fundamental understanding of the behaviour of pollutants is an increasingly important skill set required by industry. In this module we will look at the soil solution chemistry, mineral solubility, redox chemistry, as well as the chemistry at the surface of soil minerals, of a wide range of nutrients and pollutants. Soil acidification, weathering and associated chemicalmineralogical transformation, as well as landscape dynamics of carbon, iron and manganese receive special attention in this module.
Module content:
Basic concepts of soil classification, soil pedology and pedochemistry. Underlying principles of global soil classification systems. A taxonomic system for South African soils. Identification of soil horizons, forms and families. An introduction to the World Reference Base for Soil Resources. Practical work: Field, laboratory and class practicals.
Module content:
Definition and scope of engineering geology; engineering geological properties and problems of rocks and soils within different stratigraphic units and climatic regions in southern Africa. Strength and failure modes of rock material and rock failure criteria. The characteristics of joints in rock. Joint line surveys and interpretation of data. Characteristics of a rock mass, rock mass classification and determination of strength. Slope stability in surface mines. Induced seismicity due to deep mining and rock bursts. This is in support of United Nationals Sustainable Development Goals dealing with clean water, sanitation, infrastructure development.
Module content:
This module aims to provide students with a working knowledge and skills to learn methods and techniques for collecting, processing and analysing remotely sensed data. Throughout the module, emphasis will be placed on image processing, image analysis, image classification, remote sensing and applications of remote sensing in geographical analysis and environmental monitoring. The module is composed of lectures, readings, practical exercises research tasks and a project or assignments of at least 64 notional hours. In particular, the practical exercises and research tasks incorporate South African examples using satellite remotely-sensed data, as well as field spectral data measurements, to promote understanding of the state of land cover and land use types (e.g. spanning agricultural resources, water resources, urbanization) and how changes over time could impact on the changing climate in accordance with the United Nation’s Sustainable Development Goals.
Module content:
Quantitative description and measurement of soil water content and potential as well as saturated and unsaturated hydraulic conductivity. Modelling water flow in soil (Darcy’s law, Richards's equation). Infiltration, redistribution, evaporation, runoff and percolation. Irrigation in South Africa. Modelling and managing the soil water balance. Plant water consumption and the soil-plant-atmosphere continuum. Irrigation scheduling (soil, plant and atmosphere approaches). Managing poor quality water. Irrigation systems. The module includes a field trip to an irrigation scheme.
Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App