

University of Pretoria Yearbook 2019

BSc Chemistry (02133173)

Minimum duration of study	3 years
Total credits	428

Admission requirements

- The following persons will be considered for admission: a candidate who is in possession of a certificate that is deemed by the University to be equivalent to the required Grade 12 certificate with university endorsement, a candidate who is a graduate from another tertiary institution or has been granted the status of a graduate of such an institution, and a candidate who is a graduate of another faculty at the University of Pretoria.
- Life Orientation is excluded in the calculation of the Admission Point Score (APS).
- Grade 11 results are used for the conditional admission of prospective students. Final admission is based on the Grade 12 results.

Minimum Achievem English Ho Language English Fi Additiona Language	requiremen ent level ome or rst I	ts Mathemati	cs	Physical Scier	ice	APS
NSC/IEB	AS Level	NSC/IEB	AS Level	NSC/IEB	AS Level	
5	С	5	С	5	C	34

* Cambridge A level candidates who obtained at least a D in the required subjects, will be considered for admission. International Baccalaureate (IB) HL candidates who obtained at least a 4 in the required subjects, will be considered for admission.

Candidates who do not comply with the minimum admission requirements for BSc (Chemistry), may be considered for admission to the BSc – Extended programme – Physical Sciences. This programme takes a year longer than the normal programmes to complete.

BSc - Ext Minimur Achiever English H	tended Prog n requireme nent level lome	jramme - Pł ents	nysical Scien	ces		
Language or English First Additional Language		Mathematics		Physical Science		APS
NSC/IEB	AS Level	NSC/IEB	AS Level	NSC/IEB	AS Level	
4	D	4	D	4	D	28

Other programme-specific information

A student must pass all the minimum prescribed and elective module credits as set out at the end of each year within a programme as well as the total required credits to comply with the particular degree programme. Please refer to the curricula of the respective programmes. At least 144 credits must be obtained at 300-/400-level, or otherwise as indicated by curriculum. The minimum module credits needed to comply with degree requirements is set out at the end of each study programme. Subject to the programmes as indicated a maximum of 150 credits will be recognised at 100-level. A student may, in consultation with the relevant head of department and subject to the permission by the Dean, select or replace prescribed module credits not indicated in BSc three-year study programmes to the equivalent of a maximum of 36 module credits.

It is important that the total number of prescribed module credits is completed during the course of the study programme. The Dean may, on the recommendation of the relevant head of department, approve deviations in this regard. Subject to the programmes as indicated in the respective curricula, a student may not register for more than 75 module credits per semester at first-year level subject to permission by the Dean. A student may be permitted to register for up to 80 module credits in a the first semester during the first year provided that he or she obtained a final mark of no less than 70% for grade 12 Mathematics and achieved an APS of 34 or more in the NSC.

Students who are already in possession of a bachelor's degree, will not receive credit for modules of which the content overlap with modules from the degree that was already conferred. Credits will not be considered for more than half the credits passed previously for an uncompleted degree. No credits at the final-year or 300- and 400-level will be granted.

The Dean may, on the recommendation of the programme manager, approve deviations with regard to the composition of the study programme.

Please note: Where elective modules are not specified, these may be chosen from any modules appearing in the list of modules.

It remains the student's responsibility to acertain, prior to registration, whether they comply with the prerequisites of the modules they want to register for.

The prerequisites are listed in the Alphabetical list of modules.

Promotion to next study year

A student will be promoted to the following year of study if he or she passed 100 credits of the prescribed credits for a year of study, unless the Dean on the recommendation of the relevant head of department decides otherwise. A student who does not comply with the requirements for promotion to the following year of study, retains the credit for the modules already passed and may be admitted by the Dean, on recommendation of the relevant head of department, to modules of the following year of study to a maximum of 48 credits, provided that it will fit in with both the lecture and examination timetable.

General promotion requirements in the faculty

All students whose academic progress is not acceptable can be suspended from further studies.

- A student who is excluded from further studies in terms of the stipulations of the abovementioned regulations, will be notified in writing by the Dean or Admissions Committee at the end of the relevant semester.
- A student who has been excluded from further studies may apply in writing to the Admissions Committee of the

Faculty of Natural and Agricultural Sciences for re-admission.

- Should the student be re-admitted by the Admissions Committee, strict conditions will be set which the student must comply with in order to proceed with his/her studies.
- Should the student not be re-admitted to further studies by the Admissions Committee, he/she will be informed in writing.
- Students who are not re-admitted by the Admissions Committee have the right to appeal to the Senior Appeals Committee.
- Any decision taken by the Senior Appeals Committee is final.

Pass with distinction

A student obtains his or her degree with distinction if all prescribed modules at 300-level (or higher) are passed in one academic year with a weighted average of at least 75%, and obtain at least a subminimum of 65% in each of the relevant modules.

Curriculum: Year 1

Minimum credits: 140

Minimum credits: 140

Fundamental =12Core=96Electives=32

Elective Modules (Credits = 32)

Students must select elective modules with a total number of at least 32 credits.

Depending on a student's second major and other interests, the following combinations of modules are recommended (deviations allowed with permission from the head of department):

- Second major in biochemistry: MLB 111, GTS 161, MBY 161 or BME 120 (32 credits)
- Second major in plant science: MLB 111, BOT 161, MBY 161 or BME 120 (32 credits)
- Second major in geology: GLY 155, GLY 163 (32 credits)
- Second major in physics with an interest in applied mathematics: WTW 115, WTW 152, WTW 162, WTW 123 (32 credits)
- Second major in physics with an interest in statistics: WST 111, WST 121 (32 credits)
- Second major in physics with an interest in biology: MLB 111, BME 120 (32 credits)
- Second major in geography: ENV 101, GGY 156, GGY 166, WKD 164 (32 credits)
- Second major in mathematics: WTW 115, WTW 123, WTW 152, WTW 162 (32 credits)
- Second major in statistics: WST 111, WST 121 (32 credits)

Fundamental modules

Academic information management 102 (AIM 102)

Module credits	6.00
Service modules	Faculty of Education Faculty of Economic and Management Sciences Faculty of Humanities Faculty of Law Faculty of Health Sciences Faculty of Natural and Agricultural Sciences Faculty of Theology and Religion Faculty of Veterinary Science
Prerequisites	No prerequisites.
Contact time	2 lectures per week
Language of tuition	Module is presented in English
Department	Information Science
Period of presentation	Semester 2

Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology. Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.

Academic information management 111 (AIM 111)

Module credits	4.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Economic and Management Sciences Faculty of Humanities Faculty of Law Faculty of Law Faculty of Health Sciences Faculty of Natural and Agricultural Sciences Faculty of Theology and Religion
Prerequisites	No prerequisites.
Contact time	2 lectures per week
Language of tuition	Module is presented in English
Department	Information Science
Period of presentation	Semester 1

Module content

Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.

Academic information management 121 (AIM 121)

Module credits	4.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Economic and Management Sciences Faculty of Humanities Faculty of Law Faculty of Health Sciences Faculty of Natural and Agricultural Sciences Faculty of Theology and Religion Faculty of Veterinary Science
Prerequisites	No prerequisites.
Contact time	2 lectures per week
Language of tuition	Module is presented in English
Department	Informatics
Period of presentation	Semester 2

Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.

Language and study skills 110 (LST 110)

Module credits	6.00
Service modules	Faculty of Natural and Agricultural Sciences Faculty of Veterinary Science
Prerequisites	No prerequisites.
Contact time	2 lectures per week
Language of tuition	Module is presented in English
Department	Unit for Academic Literacy
Period of presentation	Semester 1

Module content

The module aims to equip students with the ability to cope with the reading and writing demands of scientific disciplines.

Academic orientation 102 (UPO 102)

Module credits	0.00
Language of tuition	Module is presented in English
Department	Natural and Agricultural Sciences Deans Office
Period of presentation	Year

Core modules

General chemistry 117 (CMY 117)

Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Health Sciences Faculty of Veterinary Science
Prerequisites	A candidate must have Mathematics for at least 60% and 60% for Physical Sciences.
Contact time	4 lectures per week, 1 practical per week
Language of tuition	Module is presented in English
Department	Chemistry
Period of presentation	Semester 1

General introduction to inorganic, analytical and physical chemistry. Atomic structure and periodicity. Molecular structure and chemical bonding using the VSEOR model. Nomenclature of inorganic ions and compounds. Classification of reactions: precipitation, acid-base, redox reactions and gas-forming reactions. Mole concept and stoichiometric calculations concerning chemical formulas and chemical reactions. Principles of reactivity: energy and chemical reactions. Physical behaviour gases, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to chemical kinetics.

General chemistry 127 (CMY 127)

Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Health Sciences Faculty of Veterinary Science
Prerequisites	Natural and Agricultural Sciences students: CMY 117 GS or CMY 154 GS Health Sciences students: none
Contact time	4 lectures per week, 1 practical per week
Language of tuition	Module is presented in English
Department	Chemistry
Period of presentation	Semester 2

Module content

Theory: General physical-analytical chemistry: Chemical equilibrium, acids and bases, buffers, solubility equilibrium, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and aminoacids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.

First course in physics 114 (PHY 114)

Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education
Prerequisites	A candidate must have passed Mathematics and Physical Science with at least 60% in the Grade 12 examination
Contact time	4 lectures per week, 1 practical per week, 1 discussion class per week
Language of tuition	Module is presented in English
Department	Physics
Period of presentation	Semester 1

SI-units. Significant figures. Waves: intensity, superposition, interference, standing waves, resonance, beats, Doppler. Geometrical optics: Reflection, refraction, mirrors, thin lenses, instruments. Physical optics: Younginterference, coherence, diffraction, polarisation. Hydrostatics and dynamics: density, pressure, Archimedes' principle, continuity, Bernoulli. Heat: temperature, specific heat, expansion, heat transfer. Vectors. Kinematics of a point: Relative, projectile, and circular motion. Dynamics: Newton's laws, friction. Work: point masses, gasses (ideal gas law), gravitation, spring, power. Kinetic energy: Conservative forces, gravitation, spring. Conservation of energy. Conservation of momentum. Impulse and collisions. System of particles: Centre of mass, Newton's laws. Rotation: torque, conservation of angular momentum, equilibrium, centre of gravity.

First course in physics 124 (PHY 124)

Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education
Prerequisites	WTW 114 GS and PHY 114 GS
Contact time	4 lectures per week, 1 practical per week, 1 discussion class per week
Language of tuition	Module is presented in English
Department	Physics
Period of presentation	Semester 2

Module content

Simple harmonic motion and pendulums. Coulomb's law. Electric field: dipoles, Gauss' law.Electric potential. Capacitance. Electric currents: resistance, resistivity, Ohm's law, energy, power, emf, RC-circuits. Magnetic Field: Hall-effect, Bio-Savart. Faraday's and Lenz's laws. Oscillations: LR-circuits. Alternating current: RLCcircuits, power, transformers. Introductory concepts to modern physics. Nuclear physics: Radioactivity.

Calculus 114 (WTW 114)

Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Economic and Management Sciences Faculty of Humanities
Prerequisites	60% for Mathematics in Grade 12
Contact time	1 tutorial per week, 4 lectures per week
Language of tuition	Module is presented in English
Department	Mathematics and Applied Mathematics
Period of presentation	Semester 1

*This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218 and WTW 220). Students will not be credited for more than one of the following modules for their degree: WTW 114, WTW 158, WTW 134, WTW 165.

Functions, limits and continuity. Differential calculus of single variable functions, rate of change, graph sketching, applications. The mean value theorem, the rule of L'Hospital. Definite and indefinite integrals, evaluating definite integrals using anti-derivatives, the substitution rule.

Mathematics 124 (WTW 124)

Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Economic and Management Sciences
Prerequisites	WTW 114
Contact time	1 tutorial per week, 4 lectures per week
Language of tuition	Module is presented in English
Department	Mathematics and Applied Mathematics
Period of presentation	Semester 2

Module content

*Students will not be credited for more than one of the following modules for their degree: WTW 124, WTW 146, WTW 148 and WTW 164. This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218, WTW 211 and WTW 220).

The vector space Rn, vector algebra with applications to lines and planes, matrix algebra, systems of linear equations, determinants. Complex numbers and factorisation of polynomials. Integration techniques and applications of integration. The formal definition of a limit. The fundamental theorem of Calculus and applications. Vector functions, polar curves and quadratic curves.

Elective modules

Biometry 120 (BME 120)

Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Natural and Agricultural Sciences Faculty of Veterinary Science
Prerequisites	At least 4 (50-59%) in Mathematics in the Grade 12 examination, or at least 50% in both Statistics 113, 123 $$
Contact time	4 lectures per week, 1 practical per week
Language of tuition	Module is presented in English
Department	Statistics
Period of presentation	Semester 2

Simple statistical analysis: Data collection and analysis: Samples, tabulation, graphical representation, describing location, spread and skewness. Introductory probability and distribution theory. Sampling distributions and the central limit theorem. Statistical inference: Basic principles, estimation and testing in the one- and two-sample cases (parametric and non-parametric). Introduction to experimental design. One- and twoway designs, randomised blocks. Multiple statistical analysis: Bivariate data sets: Curve fitting (linear and non-linear), growth curves. Statistical inference in the simple regression case. Categorical analysis: Testing goodness of fit and contingency tables. Multiple regression and correlation: Fitting and testing of models. Residual analysis. Computer literacy: Use of computer packages in data analysis and report writing.

Plant biology 161 (BOT 161)

Module credits	8.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education
Prerequisites	MLB 111 GS
Contact time	2 lectures per week, fortnightly practicals
Language of tuition	Module is presented in English
Department	Department of Plant and Soil Sciences
Period of presentation	Semester 2

Module content

Basic plant structure and function; introductory plant taxonomy and plant systematics; principles of plant molecular biology and biotechnology; adaptation of plants to stress; medicinal compounds from plants; basic principles of plant ecology and their application in natural resource management.

Aspects of human geography 156 (GGY 156)

Module credits	8.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Humanities Faculty of Health Sciences
Prerequisites	No prerequisites.
Contact time	1 tutorial per week, 3 lectures per week
Language of tuition	Module is presented in English
Department	Geography Geoinformatics and Meteorology
Period of presentation	Quarter 2

Module content

This module begins by fostering an understanding of human geography. Then follows with the political ordering of space; cultural diversity as well as ethnic geography globally and locally; population geography of the world and South Africa: and four economic levels of development. The purpose is to place South Africa in a world setting and to understand the future of the country.

Southern African geomorphology 166 (GGY 166)

Module credits	8.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Humanities Faculty of Health Sciences
Prerequisites	No prerequisites.
Contact time	4 lectures per week
Language of tuition	Module is presented in English
Department	Geography Geoinformatics and Meteorology
Period of presentation	Quarter 3

Module content

Investigating southern African landscapes and placing them in a theoretical and global context. The geomorphological evolution of southern Africa. Introduction to the concepts of Geomorphology and its relationships with other physical sciences (e.g. meteorology, climatology, geology, hydrology and biology). The processes and controls of landform and landscape evolution. Tutorial exercises cover basic techniques of geomorphological analysis, and topical issues in Geomorphology.

Introductory genetics 161 (GTS 161)

Module credits	8.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Veterinary Science
Prerequisites	MLB 111 GS
Contact time	2 lectures per week
Language of tuition	Module is presented in English
Department	Biochemistry, Genetics and Microbiology
Period of presentation	Semester 2

Module content

Chromosomes and cell division. Principles of Mendelian inheritance: locus and alleles, dominance interactions, extensions and modifications of basic principles.. Probability studies. Sex determination and sex linked traits. Pedigree analysis. Genetic linkage and chromosome mapping. Chromosome variation.

Introduction to microbiology 161 (MBY 161)

Module credits	8.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	MLB 111 GS
Contact time	2 lectures per week

Language of tuition	Module is presented in English
Department	Biochemistry, Genetics and Microbiology
Period of presentation	Semester 2

The module will introduce the student to the field of Microbiology. Basic Microbiological aspects that will be covered include introduction into the diversity of the microbial world (bacteria, archaea, eukaryotic microorganisms and viruses), basic principles of cell structure and function, microbial nutrition and microbial growth and growth control. Applications in Microbiology will be illustrated by specific examples i.e. bioremediation, animal-microbial symbiosis, plant-microbial symbiosis and the use of microorganisms in industrial microbiology. Wastewater treatment, microbial diseases and food will be introduced using specific examples.

Molecular and cell biology 111 (MLB 111)

Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Health Sciences Faculty of Veterinary Science
Prerequisites	A candidate who has passed Mathematics with at least 60% in the Grade 12 examination
Contact time	4 lectures per week, 1 practical/tutorial per week
Language of tuition	Module is presented in English
Department	Biochemistry, Genetics and Microbiology
Period of presentation	Semester 1

Module content

Introduction to the molecular structure and function of the cell. Basic chemistry of the cell. Structure and composition of prokaryotic and eukaryotic cells. Ultrastructure and function of cellular organelles, membranes and the cytoskeleton. General principles of energy, enzymes and cell metabolism. Selected processes, e.g. glycolysis, respiration and/or photosynthesis. Introduction to molecular genetics: DNA structure and replication, transcription, translation. Cell growth and cell division.

Atmospheric structure and processes 155 (WKD 155)

Module credits	16.00
Prerequisites	At least 50% for mathematics in grade 12.
Contact time	4 lectures per week, 1 practical per week
Language of tuition	Module is presented in English
Department	Geography Geoinformatics and Meteorology
Period of presentation	Semester 1

*Students are not allowed to earn credits for WKD 155 and WKD 164

Introduction to weather and climate. Climate of South Africa. Urban and rural climate. Meteorological instruments. Motion of the earth. Atmospheric mass and pressure. Energy and heat budget. Moisture in the atmosphere. Cloud development. Climate change. ENSO. Electromagnetic spectrum and remote sensing in meteorology. Synoptic weather systems of South Africa.

Climate and weather of Southern Africa 164 (WKD 164)

Module credits	8.00
Service modules	Faculty of Education Faculty of Humanities
Prerequisites	No prerequisites.
Contact time	4 lectures per week
Language of tuition	Module is presented in English
Department	Geography Geoinformatics and Meteorology
Period of presentation	Quarter 4

Module content

An introduction to the climate and general seasonal climatic circulation patterns of Southern Africa. Basic weather types and weather processes within the Southern African context. Interpretation of synoptic maps and synoptic station reports. Impacts of climate change and extreme climate events on society. *BSc (Geography) and BSc (Environmental Sciences) students may register for WKD 155. Students are not allowed to earn credits for both WKD 155 and WKD 164.

Discrete structures 115 (WTW 115)

Module credits	8.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Economic and Management Sciences
Prerequisites	50% for Mathematics in Grade 12
Contact time	1 tutorial per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Mathematics and Applied Mathematics
Period of presentation	Semester 1

Module content

Propositional logic: truth tables, logical equivalence, implication, arguments. Mathematical induction and wellordering principle. Introduction to set theory. Counting techniques: elementary probability, multiplication and addition rules, permutations and combinations, binomial theorem, inclusion-exclusion rule.

Dynamical processes 162 (WTW 162)

Module credits		credits	Module
----------------	--	---------	--------

8.00

Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	WTW 114 GS
Contact time	1 tutorial per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Mathematics and Applied Mathematics
Period of presentation	Semester 2

*Students will not be credited for more than one of the following modules for their degree: WTW 162 and WTW 264.

Introduction to the modelling of dynamical processes using elementary differential equations. Solution methods for first order differential equations and analysis of properties of solutions (graphs). Applications to real life situations.

Animal diversity 161 (ZEN 161)

Module credits	8.00
Service modules	Faculty of Education Faculty of Veterinary Science
Prerequisites	MLB 111 GS or permission from the HOD
Contact time	2 lectures per week, fortnightly practicals
Language of tuition	Module is presented in English
Department	Zoology and Entomology
Period of presentation	Semester 2

Module content

Animal classification, phylogeny, organization and terminology. Evolution of the various animal phyla, morphological characteristics and life cycles of parasitic and non-parasitic animals. Structure and function of reproductive, respiratory, excretory, circulatory and digestive systems.

Curriculum: Year 2

Minimum credits: 144

Minimum credits: 144

 $\begin{array}{rcl} \text{Core} &=& 48\\ \text{Elective} &=& 96 \end{array}$

Additional information:

Elective Modules (Credits = 96)

Students must select elective modules with a total number of at least 96 credits.

Depending on a student's second major and other interests, the following modules are recommended (deviations allowed with permission from the head of department):

- Second major in biochemistry: BCM 251, BCM 252, BCM 261, BCM 262, GTS 251, GTS 261, MBY 251 or WTW 211,
- Second major in plant science: BOT 251, BOT 261, MBY 251, MBY 261, BCM 251, BCM 252, and either BCM 261 or BCM 262 Second major in physics: PHY 255, PHY 263, WTW 211, WTW 218, WTW 220, WTW 248
- Second major in geology: GLY 253, GLY 255, GLY 261, GLY 262, GLY 266, GGY 252, GKD 22, GIS 221 Second major in geography: GGY 252, GGY 283, GGY 266, GKD 220, GIS 220, and either GLY 253 or GLY 255 (GMC 110 a prerequisite).
- Second major in mathematics with an interest in physics: WTW 211, WTW 218, WTW 220, WTW 221, PHY 255, PHY 263 (96 credits).
- Second major in physics: WTW 211, WTW 218, WTW 220, WTW 248, PHY 255, PHY 263 (96 credits)
- Second major in mathematics or applied mathematics: WTW 211, WTW 218, WTW 220, WTW 221, WTW 285, WTW 286, WTW 248 (84 credits select another 12 credits short).
- Second major in statistics: WST 211, WST 221, WTW 211, WTW 218, WTW 220, WTW 221 (96 credits)

Core modules

Physical chemistry 282 (CMY 282)

Module credits	12.00
Service modules	Faculty of Education
Prerequisites	CMY 117 and CMY 127
Contact time	1 tutorial per week, 4 lectures per week, 2 practicals per week
Language of tuition	Module is presented in English
Department	Chemistry
Period of presentation	Quarter 2

Module content

Theory: Classical chemical thermodynamics, gases, first and second law and applications, physical changes of pure materials and simple compounds. Phase rule: Chemical reactions, chemical kinetics, rates of reactions.

Analytical chemistry 283 (CMY 283)

Module credits	12.00
----------------	-------

Service modules	Faculty of Education
Prerequisites	CMY 117 and CMY 127
Contact time	1 tutorial per week, 4 lectures per week, 2 practicals per week
Language of tuition	Module is presented in English
Department	Chemistry
Period of presentation	Quarter 3

Theory: Statistical evaluation of data, gravimetric analysis, aqueous solution chemistry, chemical equilibrium, precipitation-, neutralisation- and complex formation titrations, redox titrations, potentiometric methods, introduction to electrochemistry.

Organic chemistry 284 (CMY 284)

Module credits	12.00
Service modules	Faculty of Education
Prerequisites	CMY 117 and CMY 127
Contact time	1 tutorial per week, 4 lectures per week, 2 practicals per week
Language of tuition	Module is presented in English
Department	Chemistry
Period of presentation	Quarter 1

Module content

Theory: Resonance, conjugation and aromaticity. Acidity and basicity. Introduction to ¹³C NMR spectroscopy. Electrophilic addition: alkenes. Nucleophilic substitution, elimination, addition: alkyl halides, alcohols, ethers, epoxides, carbonyl compounds: ketones, aldehydes, carboxylic acids and their derivatives.

Inorganic chemistry 285 (CMY 285)

Module credits	12.00
Service modules	Faculty of Education
Prerequisites	CMY 117 and CMY 127
Contact time	1 tutorial per week, 4 lectures per week, 2 practicals per week
Language of tuition	Module is presented in English
Department	Chemistry
Period of presentation	Quarter 4

Module content

Theory: Atomic structure, structure of solids (ionic model). Coordination chemistry of transition metals: Oxidation states of transition metals, ligands, stereochemistry, crystal field theory, consequences of d-orbital splitting, chemistry of the main group elements, electrochemical properties of transition metals in aqueous solution, industrial applications of transition metals.Fundamentals of spectroscopy and introduction to IR spectroscopy.

Elective modules

Introduction to proteins and enzymes 251 (BCM 251)

Module credits	12.00
Service modules	Faculty of Health Sciences
Prerequisites	CMY 117 GS and CMY 127 GS and MLB 111 GS
Contact time	1 tutorial per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Biochemistry, Genetics and Microbiology
Period of presentation	Semester 1

Module content

Structural and ionic properties of amino acids. Peptides, the peptide bond, primary, secondary, tertiary and quaternary structure of proteins. Interactions that stabilise protein structure, denaturation and renaturation of proteins. Introduction to methods for the purification of proteins, amino acid composition, and sequence determinations. Enzyme kinetics and enzyme inhibition. Allosteric enzymes, regulation of enzyme activity, active centres and mechanisms of enzyme catalysis. Examples of industrial applications of enzymes and in clinical pathology as biomarkers of diseases. Introduction to practical laboratory techniques and Good Laboratory Practice. Techniques for the quantitative and qualitative analysis of biological molecules, enzyme activity measurements . Processing and presentation of scientific data.

Carbohydrate metabolism 252 (BCM 252)

Module credits	12.00
Service modules	Faculty of Education Faculty of Health Sciences
Prerequisites	CMY 117 GS and CMY 127 GS and MLB 111 GS
Contact time	1 tutorial per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Biochemistry, Genetics and Microbiology
Period of presentation	Semester 1

Module content

Carbohydrate structure and function. Blood glucose measurement in the diagnosis and treatment of diabetes. Bioenergetics and biochemical reaction types. Glycolysis, gluconeogenesis, glycogen metabolism, pentose phosphate pathway, citric acid cycle and electron transport. Total ATP yield from the complete oxidation of glucose. A comparison of cellular respiration and photosynthesis. Practical techniques for the study and analysis of metabolic pathways and enzymes. PO ratio of mitochondria, electrophoresis, extraction, solubility and gel permeation techniques. Scientific method and design.

Lipid and nitrogen metabolism 261 (BCM 261)

12.00

Service modules	Faculty of Health Sciences
Prerequisites	CMY 117 GS and CMY 127 GS and MLB 111 GS
Contact time	1 tutorial per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Biochemistry, Genetics and Microbiology
Period of presentation	Semester 2

Biochemistry of lipids, membrane structure, anabolism and catabolism of lipids. Total ATP yield from the complete catabolism of lipids. Nitrogen metabolism, amino acid biosynthesis and catabolism. Biosynthesis of neurotransmitters, pigments, hormones and nucleotides from amino acids. Catabolism of pureness and pyrimidines. Therapeutic agents directed against nucleotide metabolism. Examples of inborn errors of metabolism of nitrogen containing compounds. The urea cycle, nitrogen excretion. Practical training in scientific reading skills: evaluation of a scientific report. Techniques for separation analysis and visualisation of biological molecules. Hypothesis design and testing, method design and scientific controls.

Biochemical principles of nutrition and toxicology 262 (BCM 262)

Module credits	12.00
Service modules	Faculty of Health Sciences
Prerequisites	CMY 117 GS and CMY 127 GS and MLB 111 GS
Contact time	1 tutorial per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Biochemistry, Genetics and Microbiology
Period of presentation	Semester 2

Module content

Biochemistry of nutrition and toxicology. Proximate analysis of nutrients. Review of energy requirements and expenditure, starvation, marasmus and kwashiorkor. Respiratory quotient. Requirements and function of water, vitamins and minerals. Interpretation and modification of RDA values for specific diets, eg growth, exercise, pregnancy and lactation, aging and starvation. Interactions between nutrients. Cholesterol, polyunsaturated, essential fatty acids and dietary anti-oxidants. Oxidation of fats. Biochemical mechanisms of water- and fat-soluble vitamins and assessment of vitamin status. Mineral requirements, biochemical mechanisms, imbalances and diarrhoea. Biochemistry of xenobiotics: absorption, distribution, metabolism and excretion (ADME); detoxification reactions: oxidation/reduction (Phase I), conjugations (Phase II), export from cells (Phase III); factors affecting metabolism and disposition. Examples of genetic abnormalities, phenotypes and frequencies. Examples of toxins: biochemical mechanisms of common toxins and their antidotes. Natural toxins from fungi, plants and animals: goitrogens, cyanogens, cholineesterase inhibitors, ergotoxin, aflatoxins Practical training in scientific writing skills: evaluating scientific findings. Introduction to practical techniques in nutrition and toxicology. Experimental design and calculations in experiments: determining nutritional value of metabolites and studying the ADME of toxins.

South African flora and vegetation 251 (BOT 251)

Module credits	12.00
Service modules	Faculty of Education
Prerequisites	BOT 161 or permission from head of department
Contact time	2 lectures per week, 1 practical per week
Language of tuition	Separate classes for Afrikaans and English
Department	Department of Plant and Soil Sciences
Period of presentation	Semester 1

Module content

Origin and affinity of South African flora and vegetation types; principles of plant geography; plant diversity in southern Africa; characteristics, environments and vegetation of South African biomes and associated key ecological processes; centra of plant endemism; rare and threatened plant species; biodiversity conservation and ecosystem management; invasion biology; conservation status of South African vegetation types.

Plant physiology and biotechnology 261 (BOT 261)

Module credits	12.00
Service modules	Faculty of Education
Prerequisites	BOT 161, CMY 117, CMY 127 or permission from head of department
Contact time	2 lectures per week, 1 practical per week
Language of tuition	Separate classes for Afrikaans and English
Department	Department of Plant and Soil Sciences
Period of presentation	Semester 2

Module content

Nitrogen metabolism in plants; nitrogen fixation in Agriculture; plant secondary metabolism and natural products; photosynthesis and carbohydrate metabolism in plants; applications in solar energy; plant growth regulation and the Green Revolution; plant responses to the environment; developing drought tolerant and disease resistant plants.

Introductory and neurophysiology 211 (FLG 211)

Module credits	12.00
Service modules	Faculty of Natural and Agricultural Sciences
Prerequisites	CMY 117, CMY 127, MLB 111 and PHY 131
Contact time	2 lectures per week, 1 practical per week
Language of tuition	Module is presented in English
Department	Physiology
Period of presentation	Semester 1

Orientation in physiology, homeostasis, cells and tissue, muscle and neurophysiology, cerebrospinal fluid and the special senses.

Practical work: Practical exercises to complement the theory.

Circulatory physiology 212 (FLG 212)

Module credits	12.00
Service modules	Faculty of Natural and Agricultural Sciences
Prerequisites	CMY 117, CMY 127, MLB 111 and PHY 131
Contact time	2 lectures per week, 1 practical per week
Language of tuition	Module is presented in English
Department	Physiology
Period of presentation	Semester 1

Module content

Body fluids; haematology; cardiovascular physiology and the lymphatic system. Practical work: Practical exercises to complement the theory.

Lung and renal physiology, acid-base balance and temperature 221 (FLG 221)

Module credits	12.00
Service modules	Faculty of Natural and Agricultural Sciences
Prerequisites	FLG 211 and FLG 212
Contact time	2 lectures per week, 1 practical per week
Language of tuition	Module is presented in English
Department	Physiology
Period of presentation	Semester 2

Module content

Structure, gas exchange and non-respiratory functions of the lungs; structure, excretory and non-urinary functions of the kidneys, acid-base balance, as well as the skin and body temperature control. Practical work: Practical exercises to complement the theory.

Digestion, endocrinology and reproductive systems 222 (FLG 222)

Module credits	12.00
Service modules	Faculty of Natural and Agricultural Sciences
Prerequisites	FLG 211 and FLG 212
Contact time	2 lectures per week, 1 practical per week
Language of tuition	Module is presented in English
Department	Physiology

Period of presentation Semester 2

Module content

Nutrition, digestion and metabolism; hormonal control of the body functions and the reproductive systems. Practical work: Practical exercises to complement the theory.

City structure, environment and society 266 (GGY 266)

Module credits	24.00
Service modules	Faculty of Education Faculty of Humanities
Prerequisites	No prerequisites.
Contact time	3 lectures per week, 1 practical per week
Language of tuition	Module is presented in English
Department	Geography Geoinformatics and Meteorology
Period of presentation	Semester 2

Module content

An urbanising world. Urban structure and land use. Urban processes. The urban environment. Social structure and change in cities. Living in the city. Economy, society and politics in the city. Third-world cities and South African cities. Urban futures.

Geographic data analysis 220 (GIS 220)

Module credits	14.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	GMC 110 and (STK 110 OR BME 120)
Contact time	2 lectures per week, 1 practical per week
Language of tuition	Module is presented in English
Department	Geography Geoinformatics and Meteorology
Period of presentation	Semester 2

Module content

The nature of geographical data and measurement.Application of statistics in the geographical domain. Probability, probability distributions and densities, expected values and variances, Central Limit theorem. Sampling techniques. Exploratory data analysis, descriptive statistics, statistical estimation, hypothesis testing, correlation analysis and regression analysis.

Introductory soil science 250 (GKD 250)

Module credits	12.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	CMY 117 GS or permission from the HOD

Contact time	3 lectures per week, 1 practical per week
Language of tuition	Separate classes for Afrikaans and English
Department	Department of Plant and Soil Sciences
Period of presentation	Semester 1

Origin and development of soil, weathering and soil formation processes. Profile differentiation and morphology. Physical characteristics: texture, structure, soil water, atmosphere and temperature. Chemical characteristics: clay minerals, ion exchange, pH, buffer action, soil acidification and salinisation of soil. Soil fertility and fertilisation. Soil classification. Practical work: Laboratory evaluation of simple soil characteristics. Field practicals on soil formation in the Pretoria area.

Molecular genetics 251 (GTS 251)

Module credits	12.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education
Prerequisites	GTS 161 GS
Contact time	2 lectures per week
Language of tuition	Module is presented in English
Department	Biochemistry, Genetics and Microbiology
Period of presentation	Semester 1

Module content

The chemical nature of DNA. The processes of DNA replication, transcription, RNA processing, translation. Control of gene expression in prokaryotes and eukaryotes. Recombinant DNA technology and its applications in gene analysis and manipulation.

Genetic diversity and evolution 261 (GTS 261)

Module credits	12.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education
Prerequisites	GTS 251 GS
Contact time	2 lectures per week
Language of tuition	Module is presented in English
Department	Biochemistry, Genetics and Microbiology
Period of presentation	Semester 2

Chromosome structure and transposable elements. Mutation and DNA repair. Genomics and proteomics. Organelle genomes. Introduction to genetic analysis of populations: allele and genotypic frequencies, Hardy Weinberg Law, its extensions and implications for different mating systems. Introduction to quantitative and evolutionary genetics.

Bacteriology 251 (MBY 251)

Module credits	12.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	MBY 161 GS
Contact time	2 lectures per week, fortnightly practicals
Language of tuition	Module is presented in English
Department	Biochemistry, Genetics and Microbiology
Period of presentation	Semester 1

Module content

Growth, replication and survival of bacteria, Energy sources, harvesting from light versus oxidation, regulation of catabolic pathways, chemotaxis. Nitrogen metabolism, iron-scavenging. Alternative electron acceptors: denitrification, sulphate reduction, methanogenesis. Bacterial evolution, systematic and genomics. Biodiversity; bacteria occurring in the natural environment (soil, water and air), associated with humans, animals, plants, and those of importance in foods and in the water industry.

Mycology 261 (MBY 261)

Module credits	12.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	MBY 161 GS
Contact time	2 lectures per week
Language of tuition	Module is presented in English
Department	Biochemistry, Genetics and Microbiology
Period of presentation	Semester 2

Module content

Organisation and molecular architecture of fungal thalli, chemistry of the fungal cell. Chemical and physiological requirements for growth and nutrient acquisition. Mating and meiosis; spore development; spore dormancy, dispersal and germination. Fungi as saprobes in soil, air, plant, aquatic and marine ecosystems; role of fungi as decomposers and in the deterioration of materials; fungi as predators and parasites; mycoses, mycetisms and mycotoxicoses; fungi as symbionts of plants, insects and animals. Applications of fungi in biotechnology.

Linear a	lgebra	211	(WTW)	211)
----------	--------	-----	-------	------

Module credits

12.00

Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Economic and Management Sciences
Prerequisites	WTW 124
Contact time	1 tutorial per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Mathematics and Applied Mathematics
Period of presentation	Semester 1

This is an introduction to linear algebra on Rn. Matrices and linear equations, linear combinations and spans, linear independence, subspaces, basis and dimension, eigenvalues, eigenvectors, similarity and diagonalisation of matrices, linear transformations.

Calculus 218 (WTW 218)

Module credits	12.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Economic and Management Sciences
Prerequisites	WTW 114 and WTW 124
Contact time	1 tutorial per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Mathematics and Applied Mathematics
Period of presentation	Semester 1

Module content

Calculus of multivariable functions, directional derivatives. Extrema and Lagrange multipliers. Multiple integrals, polar, cylindrical and spherical coordinates.

Analysis 220 (WTW 220)

Module credits	12.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Economic and Management Sciences
Prerequisites	WTW 114 and WTW 124, WTW 211 and WTW 218
Contact time	1 tutorial per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Mathematics and Applied Mathematics
Period of presentation	Semester 2

Properties of real numbers. Analysis of sequences and series of real numbers. Power series and theorems of convergence. The Bolzano-Weierstrass theorem. The intermediate value theorem and analysis of real-valued functions on an interval. The Riemann integral: Existence and properties of the interval.

Linear algebra 221 (WTW 221)

Module credits	12.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Economic and Management Sciences
Prerequisites	WTW 211 and WTW 218
Contact time	1 tutorial per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Mathematics and Applied Mathematics
Period of presentation	Semester 2

Module content

Abstract vector spaces, change of basis, matrix representation of linear transformations, orthogonality, diagonalisability of symmetric matrices, some applications.

Vector analysis 248 (WTW 248)

Module credits	12.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education
Prerequisites	WTW 218
Contact time	1 tutorial per week, 2 lectures per week
Language of tuition	Afrikaans and English are used in one class
Department	Mathematics and Applied Mathematics
Period of presentation	Semester 2

Module content

Vectors and geometry. Calculus of vector functions with applications to differential geometry, kinematics and dynamics. Vector analysis, including vector fields, line integrals of scalar and vector fields, conservative vector fields, surfaces and surface integrals, the Theorems of Green, Gauss and Stokes with applications.

Discrete structures 285 (WTW 285)

Module credits	12.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	WTW 115
Contact time	1 tutorial per week, 2 lectures per week

Language of tuition	Module is presented in English
Department	Mathematics and Applied Mathematics
Period of presentation	Semester 2

Setting up and solving recurrence relations. Equivalence and partial order relations. Graphs: paths, cycles, trees, isomorphism. Graph algorithms: Kruskal, Prim, Fleury. Finite state automata.

Differential equations 286 (WTW 286)

Module credits	12.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Economic and Management Sciences
Prerequisites	WTW 114, WTW 124 and WTW 162
Contact time	1 tutorial per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Mathematics and Applied Mathematics
Period of presentation	Semester 1

Module content

*Students will not be credited for more than one of the modules for their degree: WTW 264, WTW 286 Theory and solution methods for ordinary differential equations and initial value problems: separable and linear first-order equations, linear equations of higher order, systems of linear equations. Application to mathematical models. Numerical methods applied to nonlinear systems.Qualitative analysis of linear systems.

Curriculum: Final year

Minimum credits: 144

Minimum credits: 144

 $\begin{array}{rcl} \text{Core} &=& 72\\ \text{Elective} &=& 72 \end{array}$

Students must select elective modules with a total number of at least 72 credits.

Depending on a student's second major and other interests, the following modules are recommended (deviations allowed with permission from the head of department):

- Second major in biochemistry: BCM 356, BCM 357, BCM 367, BCM 368 (72 credits)
- Second major in plant science: BOT 356, BOT 358, and any two of BOT 365, BOT 366 and BTC 361 (72 credits).
- Second major in physics: PHY 356, PHY 364 (72 credits).
- Second major in geology: GLY365, GLY366, GLY367, GLY 368 (78 credits).
- Second major in geography: ENV 301, GGY 356, GGY 363, GGY 366 (66 credits 6 credits short). Note that in order to qualify for BSc Honours in Geography, students need to change their registration to BSc Geography at the start of the third year to replace core chemistry modules with additional Geography modules.
- Second major in mathematics: WTW 310, WTW 320, WTW 381 and WTW 389 (72 credits).
- Second major in applied mathematics: WTW 310, WTW 382, WTW 383, WTW 386 and WTW 387 (90 credits 18 credits extra).
- Second major in statistics: WST 311, WST 312, WST 321, STK 353 (79 credits)

Core modules

Physical chemistry 382 (CMY 382)

Module credits	18.00
Service modules	Faculty of Education
Prerequisites	CMY 282, CMY 283, CMY 284 and CMY 285
Contact time	4 lectures per week, 2 practicals per week, 1 discussion class per week
Language of tuition	Module is presented in English
Department	Chemistry
Period of presentation	Quarter 4

Module content

Theory: Molecular quantum mechanics. Introduction: Shortcomings of classical physics, dynamics of microscopic systems, quantum mechanical principles, translational, vibrational and rotational movement. Atomic structure and spectra: Atomic hydrogen, multiple electron systems, spectra of complex atoms, molecular structure, the hydrogen molecule ion, diatomic and polyatomic molecules, structure and properties of molecules. Molecules in motion: Viscosity, diffusion, mobility. Surface chemistry: Physisorption and chemisorption, adsorption isotherms, surface tension, heterogeneous catalytic rate reactions, capillarity.

Analytical chemistry 383 (CMY 383)

Module credits

```
18.00
```


Service modules	Faculty of Education
Prerequisites	CMY 282, CMY 283, CMY 284 and CMY 285
Contact time	4 lectures per week, 2 practicals per week, 1 discussion class per week
Language of tuition	Module is presented in English
Department	Chemistry
Period of presentation	Quarter 1

Theory: Separation methods: Extraction, multiple extraction, chromatographic systems. Spectroscopy: Construction of instruments, atomic absorption and atomic emission spectrometry, surface analysis techniques. Mass spectrometry. Instrumental electrochemistry.

Organic chemistry 384 (CMY 384)

Module credits	18.00
Service modules	Faculty of Education
Prerequisites	CMY 282, CMY 283, CMY 284 and CMY 285
Contact time	4 lectures per week, 2 practicals per week, 1 discussion class per week
Language of tuition	Module is presented in English
Department	Chemistry
Period of presentation	Quarter 3

Module content

Theory: NMR spectroscopy: applications. Aromatic chemistry, Synthetic methodology in organic chemistry. Carbon-carbon bond formation: alkylation at nucleophilic carbon sites, aldol and related condensations, Wittig and related reactions, acylation of carbanions (Claisen condensation).

Inorganic chemistry 385 (CMY 385)

Module credits	18.00
Service modules	Faculty of Education
Prerequisites	CMY 282, CMY 283, CMY 284 and CMY 285
Contact time	4 lectures per week, 2 practicals per week, 1 discussion class per week
Language of tuition	Module is presented in English
Department	Chemistry
Period of presentation	Quarter 2

Module content

Theory: Structure and bonding in inorganic chemistry. Molecular orbital approach, diatomic and polyatomic molecules, three-centre bonds, metal-metal bonds, transition metal complexes, magnetic properties, electronic spectra, reactivity and reaction mechanisms, reaction types, acid-base concepts, non-aqueous solvents, special topics.

Elective modules

Macromolecules of life: Structure-function and Bioinformatics 356 (BCM 356)

Module credits	18.00
Prerequisites	BCM 251 or permission from HOD
Contact time	2 lectures per week, 1 practical/tutorial per week
Language of tuition	Module is presented in English
Department	Biochemistry, Genetics and Microbiology
Period of presentation	Semester 1

Module content

Structure, function, bioinformatics and biochemical analyses of nucleotides, oligonucleotides, amino acids, proteins and ligands and their organisation into hierarchial, higher order structures and interdependent systems. Principles of structure-function relationships. Protein folding, sequence motifs and domains, higher order and supramolecular structure, self-assembly, conjugated proteins, post-translational modifications. Principles of molecular recognition in protein-ligand, protein-protein, protein-DNA, protein-RNA, DNA-DNA, DNA-ligand, DNA-RNA and RNA-RNA interactions. The RNA structural world, RNAi, miRNA and ribosomes. Cellular functions of coding and non-coding nucleic acids. Population-specific mutations in disease. Global analysis of proteins through proteomics. Basic principles of nuclear magnetic resonance spectroscopy, mass spectrometry and X-ray crystallography. Protein purification and characterization including, pl, molecular mass, amino acid composition and sequence. Mechanistic aspects and regulation of information flow from DNA via RNA to proteins and back. Lectures incorporate the latest insights into the central dogma of biochemistry and viral polymerases which reverse the information flow ensuring students are prepared for a competitive job market. Practical training include hands-on practical sessions for nucleic acid purification, sequencing and structure characterisation, protein production purification (including SDS-PAGE) and sequence analysis including mass spectrometry, protein structure analysis by 3D protein modelling and protein folding (Bioinformatics).

Biocatalysis and integration of metabolism 357 (BCM 357)

Module credits	18.00
Prerequisites	BCM 251 and BCM 252 and BCM 261 or permission from the HOD
Contact time	2 lectures per week, 1 practical/tutorial per week
Language of tuition	Module is presented in English
Department	Biochemistry, Genetics and Microbiology
Period of presentation	Semester 1

Enzyme nomenclature and classification. Specificity and mechanisms: the active site, mechanisms of catalysis and examples of specific enzyme mechanisms, e.g. lysozyme and carboxypeptidase A. Advanced enzyme kinetics, Cleland nomenclature and multi-substrate reactions. Allosteric enzymes: models by Koshland, Hill and Monod. Ligands binding to proteins. Inhibitors of angiotensin converting enzyme (ACE). RNA as enzymes. Applications of enzymes in food and cosmetics industries and in clinical pathology assays as biomarkers of diseases and toxic responses. Elucidation of metabolic pathways. Antibiotic resistance mechanisms and development of new drugs. Hormonal regulation and integration of mammalian metabolism. Regulation of fuel metabolism after a meal, period between meals and starvation. Metabolic adaptions during diabetes. Obesity and the regulation of body mass. Obesity, matabolic syndrom and Type 2 diabetes (T2D). Management of T2D with diet, exercise and medication. Practical sessions cover tutorials on calculations, isolation of an enzyme, determination of pH and temperature optimum, determination of Km and Vmax, enzyme activation and enzyme inhibition. Computer simulations of drug design and protein docking to improve efficacy and lower toxicity.

Cell structure and function 367 (BCM 367)

Module credits	18.00
Prerequisites	BCM 251 and BCM 261 or permission from the HOD
Contact time	2 lectures per week, 1 practical/tutorial per week
Language of tuition	Module is presented in English
Department	Biochemistry, Genetics and Microbiology
Period of presentation	Semester 2

Module content

Visualising cell structure and localising proteins within cells. Cell ultrastructure. Purification of subcellular organelles. Culturing of cells. Biomembrane structure. Transmembrane transport of ions and small molecules and the role of these processes in disease. Moving proteins into membranes and organelles. Vesicular traffic, secretion, exocytosis and endocytosis. Cell organisation and movement motility based on the three types of cytoskeletal structures including microfilaments, microtubules and intermediate filaments as well as their associated motor proteins. Cell-cell and cell-matrix adhesion through corresponding proteins and morphological structures. Practical training includes tutorials on cytometry and mircoscopy, mini-research projects where students are introduced and guided through aspects of research methodology, experimental planning techniques associated with cellular assays, buffer preparation, active transport studies in yeast cells, structure-function analyses of actin and binding partners.

Molecular basis of disease 368 (BCM 368)

Module credits	18.00
Prerequisites	BCM 251 and BCM 252 and BCM 261 or permission from the HOD.
Contact time	2 lectures per week, 1 practical/tutorial per week
Language of tuition	Module is presented in English
Department	Biochemistry, Genetics and Microbiology
Period of presentation	Semester 2

Molecular mechanisms behind exogenous and endogenous diseases. Foundational knowledge of the immune system, with innate-, adaptive- and auto-immunity (molecular mechanisms of the maintenance and failure of the recognition of foreign in the context of self in the mammalian body) being some of the key concepts. Molecular pathology and immunobiochemistry of exogenous diseases against viral, bacterial and parasitic pathogens with a focus on the human immunodeficiency virus (HIV), tuberculosis (TB) and malaria. Endogenous disease will describe the biochemistry of normal cell cycle proliferation, quiescence, senescence, differentiation and apoptosis, and abnormal events as illustrated by cancer. Tutorials will focus on immunoassays, vaccines, diagnostic tests for diseases and drug discovery towards therapeuticals.

Sustainable development 356 (GGY 356)

Module credits	18.00
Service modules	Faculty of Education Faculty of Humanities
Prerequisites	No prerequisites.
Contact time	3 lectures per week, 1 practical per week
Language of tuition	Module is presented in English
Department	Geography Geoinformatics and Meteorology
Period of presentation	Quarter 1

Module content

The module conceptually integrates environmental, economic, and social components of sustainable development. Other topics covered include changing perceptions on development and environment, development paradigms, challenges of sustainable development, actors and actions in sustainable development, rural and urban livelihoods, and a Third World assessment of sustainable development in the developing world.

Applied geomorphology 363 (GGY 363)

Module credits	12.00
Service modules	Faculty of Education
Prerequisites	GGY 252
Contact time	4 lectures per week
Language of tuition	Module is presented in English
Department	Geography Geoinformatics and Meteorology
Period of presentation	Quarter 4

Module content

*Note: The content of this module is the same as GGY 361 and students are not allowed to earn credits for both GGY 361 and GGY 363.

Interactions of geomorphic processes within the physical and built environments; themes such as geomorphology and environmental change, slope processes and the environment, geomorphic risks and hazards, soil erosion and conservation, geomorphology in environmental management, applied weathering.

Development frameworks 366 (GGY 366)

Module credits	18.00
Service modules	Faculty of Education Faculty of Humanities
Prerequisites	No prerequisites.
Contact time	3 lectures per week, 1 practical per week
Language of tuition	Module is presented in English
Department	Geography Geoinformatics and Meteorology
Period of presentation	Quarter 3

Module content

Classic development frameworks. Spatial development history and legacy in South Africa. Overview of contemporary environmental legislation in South Africa. Rural development strategy. Rural and agricultural reconstruction. Land reform. Urban development and strategy. Urban spatial reconstruction. National spatial development frameworks.

Geographic information systems 310 (GIS 310)

Module credits	22.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	GGY 283
Contact time	2 lectures per week, 1 practical per week
Language of tuition	Module is presented in English
Department	Geography Geoinformatics and Meteorology
Period of presentation	Semester 1

Module content

Advanced theory and practice of Geographic Information Systems; GIS applications; design and implementation of GIS applications. A project or assignments of at least 64 notional hours.

Spatial analysis 320 (GIS 320)

Module credits	22.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	GIS 310 or permission from the HOD
Contact time	2 lectures per week, 1 practical per week
Language of tuition	Module is presented in English
Department	Geography Geoinformatics and Meteorology
Period of presentation	Semester 2

Construction of Raster Geovisualisations, spatial model construction and use, multi-criteria decision analysis. Factor analysis: Principle component analysis. Geostatistics: Spatial dependence modelling, ordinary kriging. Markov chains and cellular Automata, combined models. A project or assignment of at least 64 notional hours.

Numerical analysis 383 (WTW 383)

Module credits	18.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Economic and Management Sciences Faculty of Humanities
Prerequisites	WTW 114, WTW 123 WTW 124 and WTW 211
Contact time	2 lectures per week, 1 practical per week
Language of tuition	Afrikaans and English are used in one class
Department	Mathematics and Applied Mathematics
Period of presentation	Semester 2

Module content

Direct methods for the numerical solution of systems of linear equations, pivoting strategies. Iterative methods for solving systems of linear equations and eigenvalue problems. Iterative methods for solving systems of nonlinear equations. Introduction to optimization. Algorithms for the considered numerical methods are derived and implemented in computer programmes. Complexity of computation is investigated. Error estimates and convergence results are proved.

Geometry 389 (WTW 389)

Module credits	18.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Humanities
Prerequisites	WTW 211
Contact time	1 tutorial per week, 2 lectures per week
Language of tuition	Afrikaans and English are used in one class
Department	Mathematics and Applied Mathematics
Period of presentation	Semester 2

Module content

Axiomatic development of neutral, Euclidean and hyperbolic geometry. Using models of geometries to show that the parallel postulate is independent of the other postulates of Euclid.

The information published here is subject to change and may be amended after the publication of this information. The General Regulations (G Regulations) apply to all faculties of the University of Pretoria. It is expected of students to

familiarise themselves well with these regulations as well as with the information contained in the General Rules section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.