Programme: BSc specialising in Geoinformatics 4-year programme

Kindly take note of the disclaimer regarding qualifications and degree names.
Code Faculty Department
02131005 Faculty of Natural and Agricultural Sciences Department: Geography, Geoinformatics and Meteorology
Credits Duration NQF level
Minimum duration of study: 4 years Total credits: 511 NQF level:  07

Programme information

This is an extended BSc degree programme with a four-year curriculum that is only presented on a full-time basis. It is designed to enable students, who show academic potential, to obtain a BSc degree.

This programme is directed at a general formative education in the natural sciences. It provides the student with a broad academic basis to continue with postgraduate studies and prepares the student for active involvement in a wide variety of career possibilities.

  1. Students who are admitted to one of the BSc four-year programmes register for one specific programme. 
  2. These programmes are followed by students who, as a result of exceptional circumstances, will benefit from an extended programme.
  3. Students who do not comply with the normal three-year BSc entrance requirements for study in the Faculty of Natural and Agricultural Sciences, may nevertheless be admitted to the Faculty in one of the BSc four-year programmes. Generally, an extended programme means that the first study year is extended to take two years. The possibility of switching over to other faculties after one or two years in the four-year programmes exists. This depends on selection rules and other conditions stipulated by the other faculties.
  4. Applications for admission to the BSc four-year programmes should be submitted in accordance with the UP applications process, with applications considered up to 30 June and in a second round in August/September. Details are obtainable from the Student Administration at the Faculty of Natural and Agricultural Sciences.
  5. The rules and regulations applicable to the mainstream study programmes apply mutatis mutandis to the BSc four-year programmes, with exceptions as indicated in the regulations pertaining to the BSc four-year programmes. For instance, students admitted into the BSc four-year programmes must have a National Senior Certificate with admission for degree purposes.

Admission requirements

Important information for all prospective students for 2025

The admission requirements below apply to all who apply for admission to the University of Pretoria with a National Senior Certificate (NSC) and Independent Examination Board (IEB) qualifications. Click here for this Faculty Brochure.

Minimum requirements

Achievement level

English Home Language or English First Additional Language

Mathematics

Physical Sciences 

APS

NSC/IEB

NSC/IEB

NSC/IEB

58%

58%

58%

32

 

Life Orientation is excluded when calculating the APS. 

Applicants currently in Grade 12 must apply with their final Grade 11 (or equivalent) results.

Applicants who have completed Grade 12 must apply with their final NSC or equivalent qualification results.

Please note that meeting the minimum academic requirements does not guarantee admission.

Only students that have completed school in the last two years and have not studied at a tertiary institution will be considered for this programme. 

Successful candidates will be notified once admitted or conditionally admitted.

Unsuccessful candidates will also be notified.

Applicants should check their application status regularly on the UP Student Portal at click here.

Applicants with qualifications other than the abovementioned should refer to the International undergraduate prospectus 2025: Applicants with a school leaving certificate not issued by Umalusi (South Africa), available at click here.

International students: Click here.

 

Examinations and pass requirements

Academic promotion requirements
Students who do not show progress during the first semester of the first year will be referred to the Admissions Committee of the Faculty.
It is expected of students who register for the first year of the BSc four-year programmes to pass all the prescribed modules of the first year.

Progression requirement
The first year is foundational to the mainstream modules that follow; students will be limited to repeating two foundation modules during year 2 of study. Students may apply for internal transfers at the end of year 2. Not all mainstream programmes will be accessible; the Faculty’s transfer guide will clearly outline all possibilities and the overarching objective will be that approved transfers will not involve adding an additional year of study. 

Minimum credits: 100

Fundamental  =  20
Core               =  80

Fundamental modules

Core modules

  • Module content:

    In this module, students will embark on a journey to understand the nature and scope of biology, delving into its importance in unravelling the mysteries of life. They will explore the essential characteristics of living organisms, encompassing cellular structure, metabolic processes, growth, reproduction, and adaptation. The scientific method, serving as a structured framework for inquiry, hypothesis formulation, experimentation, and evidence-based conclusion making, will be examined. The molecular basis of life, encompassing carbohydrates, lipids, proteins, and nucleic acids, and their significance in cellular structure and function will be studied. The intricate workings of cells and organelles will be introduced, along with DNA structure and replication. Furthermore, they will explore the complexities of the cell cycle, including mitosis and meiosis, and their important roles in growth, development, and genetic inheritance. Hands-on laboratory activities will include microscope operation, specimen preparation, and techniques for calculating magnification.

    View more

  • Module content:

    In this module, students will explore various aspects of biology and ecology, starting with metabolic pathways like cellular respiration and photosynthesis, elucidating how cells obtain and utilize energy. They will delve into evolutionary principles such as natural selection, adaptation, and speciation, and their role in shaping the diversity of life. The concept of taxonomy will be introduced, clarifying its role in categorizing organisms based on shared characteristics. Additionally, students will explore the tree of life as a visual representation of the evolutionary lineage of all living beings. Ecological concepts such as trophic levels, biodiversity hotspots, and ecosystem services will be discussed to emphasize their critical role in sustaining life on Earth. The module will also showcase Africa's remarkable biodiversity, ranging from its megafauna to its diverse array of plant and microbial life. Students will delve into conservation ecology within the context of Africa, analyzing strategies aimed at preserving biodiversity, addressing human-wildlife conflicts, and fostering sustainable development practices. Lastly, the module will address global challenges such as food security and climate change, examining their profound implications for humanity's future.

    View more

  • Module content:

    The first semester of foundational chemistry will introduce scientific communication to students in terms of the language of chemistry and necessary mathematical skills. The semester will begin with an in-depth study of dimensional analysis which paves the way for mole concept calculations and complex stoichiometry. Chemical reactions, including equations, types of reactions and redox reactions will round off the first semester of study.

    View more

  • Module content:

    The second semester of foundational chemistry will begin with naming, bonding and molecular geometries. Molecular geometry will form the basis for intermolecular forces, phases of matter and different domains of thinking within the chemistry discipline. Thinking on the macroscopic, submicroscopic and representational domains is essential for future scientists. Embedded throughout the course will be a systems thinking approach to chemistry, seeing chemistry as an integral part of a global whole.

    View more

  • Module content:

    This module introduces the fundamental principles and tools of physics. Students will gain mastery in measurement techniques, data analysis through graphical representations, and dimensional analysis to identify hidden relationships. Subsequently, the module focuses on one-dimensional kinematics, emphasizing the concepts of position, velocity, and acceleration. Further exploration delves into longitudinal and transverse waves, investigating their properties and propagation mechanisms. The module then introduces physical optics, exploring the behaviour of light through lenses and the formation of images. Finally, the foundations of thermodynamics are established, focusing on the concepts of heat, temperature, and heat capacity.

    View more

  • Module content:

    Building upon the previous semester, vector algebra will be introduced, including notation, addition, coordinate systems, and manipulation of magnitudes and angles. Kinematics expands to two- and three-dimensional motion, providing a comprehensive understanding of real-world scenarios. The core of the module focuses on mechanics, analysing the interplay of forces, inertia, and motion governed by Newton's laws. Concepts of momentum, impulse, and conservation laws are introduced. Further exploration investigates equilibrium of forces, friction, and the dynamics of circular motion. These concepts lead to energy principles including work, kinetic energy, the work-energy theorem and power, potential energy, conservative and non-conservative forces and collisions. The module concludes with an introduction to direct current circuits, exploring the flow of current in resistor-based circuits.

    View more

  • Module content:

    Data literacy in modern society: fundamental understanding of data and its presentation. Data ethics, importing, cleaning, manipulation and handling. Sources and types of data. Sampling methods and the collection of data. Statistical concepts are demonstrated and interpreted through Excel (practical coding) and simulation within a data science framework.

    View more

  • Module content:

    Exploratory data analysis: tabulation, data visualisation and descriptive measures of location and dispersion. Introduction to probability and counting techniques. Aims of data analysis: descriptive, inferential and predictive. Statistical concepts are demonstrated and interpreted through Excel (practical coding) and simulation within a data science framework.

    View more

  • Module content:

    This module serves as an introduction to algebra, functions, sequences, and trigonometry, and it aims to deepen students’ conceptual understanding of real numbers, elementary set notation, exponents, radicals, algebraic expressions, fractional expressions, linear and quadratic equations, and inequalities. Coordinate geometry: lines, and circles are discussed. Functions are presented numerically, symbolically, graphically, and verbally, focusing on the definition, notation, piecewise-defined functions, domain and range, graphs, transformations of functions, symmetry, even and odd functions, combining functions, one-to-one functions and inverses, polynomial functions and zeros. Trigonometry: the relationship between degrees and radians measure is discussed, as well as the unit circle, trigonometric functions, fundamental identities, trigonometric graphs, trigonometric identities, double-angle, half-angle formulae, trigonometric equations, and applications.

    View more

  • Module content:

    The second-semester mathematics module focuses on the mathematical order of numbers and applications: Arithmetic and geometric sequences and series, summation notation, infinite geometric series, compound interest, annuities and instalments, exponential and logarithmic equations, followed by the laws of logarithms. Furthermore, one-to-one functions are extended to exponential and logarithmic functions. An introduction to calculus focusing on finding limits numerically and graphically, finding limits algebraically, techniques for evaluating limits, and differentiation rules. 

    View more

Minimum credits: 136

Core              =   136


Additional information:
Students who intend to take mathematics to the 200 level, have to take the combination of WTW 114 and WTW 124 instead of WTW 134, WTW 146 and WTW 148, if they meet the entry requirements.

Core modules

  • Module content:

    Introducing the basic concepts and interrelationships required to understand the complexity of natural environmental problems, covering an introduction to environmental science and biogeography; including a first introduction to SDGs and Aichi targets.

    View more

  • Module content:

    This module begins by fostering an understanding of human geography. Then follows with the political ordering of space; cultural diversity as well as ethnic geography globally and locally; population geography of the world and South Africa: and four economic levels of development. The purpose is to place South Africa in a world setting and to understand the future of the country.

    View more

  • Module content:

    Note: Students cannot register for both GGY 166 and GGY 168.

    Investigating southern African landscapes and placing them in a theoretical and global context. The geomorphological evolution of southern Africa. Introduction to the concepts of Geomorphology and its relationships with other physical sciences (e.g. meteorology, climatology, geology, hydrology and biology). The processes and controls of landform and landscape evolution. Tutorial exercises cover basic techniques of geomorphological analysis, and topical issues in Geomorphology.

    View more

  • Module content:

    History, present and future of cartography. Introductory geodesy: shape of the earth, graticule and grids, datum definition, elementary map projection theory, spherical calculations. Representation of geographical data on maps: Cartographic design, cartographic abstraction, levels of measurement and visual variables. Semiotics for cartography: signs, sign systems, map semantics and syntactics, explicit and implicit meaning of maps (map pragmatics). Critique maps of indicators to measure United Nations Sustainable Development Goals in South Africa.

    View more

  • Module content:

    Introduction to information systems, information systems in organisations, hardware: input, processing, output, software: systems and application software, organisation of data and information, telecommunications and networks, the Internet and Intranet. Transaction processing systems, management information systems, decision support systems, information systems in business and society, systems analysis, systems design, implementation, maintenance and revision.

    View more

  • Module content:

    Introduction to programming.

    View more

  • Module content:

    Programming.

    View more

  • Module content:

    General systems theory, creative problem solving, the business analyst, systems development building blocks, systems analysis methods, process modelling and data modelling.

    View more

  • Module content:

    The entrepreneurial mind-set; managers and managing; values, attitudes, emotions, and culture: the manager as a person; ethics and social responsibility; decision making; leadership and responsible leadership; effective groups and teams; managing organizational structure and culture inclusive of the different functions of a generic organisation and how they interact (marketing; finance; operations; human resources and general management); contextualising Sustainable Development Goals (SDG) in each of the topics.

    View more

  • Module content:

    Value chain management: functional strategies for competitive advantage; human resource management; managing diverse employees in a multicultural environment; motivation and performance; using advanced information technology to increase performance; production and operations management; financial management; corporate entrepreneurship.

    View more

  • Module content:

    *Students will not be credited for more than one of the following modules for their degree: WTW 134, WTW 165, WTW 114, WTW 158. WTW 134 does not lead to admission to Mathematics at 200 level and is intended for students who require Mathematics at 100 level only. WTW 134 is offered as WTW 165 in the second semester only to students who have applied in the first semester of the current year for the approximately 65 MBChB, or the 5-6 BChD places becoming available in the second semester and who were therefore enrolled for MGW 112 in the first semester of the current year. 
    Functions, derivatives, interpretation of the derivative, rules of differentiation, applications of differentiation, integration, interpretation of the definite integral, applications of integration. Matrices, solutions of systems of equations. All topics are studied in the context of applications.

    View more

  • Module content:

    *Students will not be credited for more than one of the following modules for their degree:
    WTW 124, WTW 146 and WTW 164. The module WTW 146 is designed for students who require Mathematics at 100 level only and does not lead to admission to Mathematics at 200 level.

    Vector algebra, lines and planes, matrix algebra, solution of systems of equations, determinants. Complex numbers and polynomial equations. All topics are studied in the context of applications.

    View more

  • Module content:

    *Students will not be credited for more than one of the following modules for their degree:
    WTW 124, WTW 148 and WTW 164. The module WTW 148 is designed for students who require Mathematics at 100 level only and does not lead to admission to Mathematics at 200 level.

    Integration techniques. Modelling with differential equations. Functions of several variables, partial derivatives, optimisation. Numerical techniques. All topics are studied in the context of applications.

    View more

Minimum credits: 143

Core       =   143

Core modules

  • Module content:

    Basic principles of law of contract. Law of sales, credit agreements, lease.

    View more

  • Module content:

    In this module students are equipped with an understanding of the moral issues influencing human agency in economic and political contexts. In particular philosophy equips students with analytical reasoning skills necessary to understand and solve complex moral problems related to economic and political decision making. We demonstrate to students how the biggest questions concerning the socio-economic aspects of our lives can be broken down and illuminated through reasoned debate. Examples of themes which may be covered in the module include justice and the common good, a moral consideration of the nature and role of economic markets on society, issues concerning justice and equality, and dilemmas of loyalty. The works of philosophers covered may for instance include that of Aristotle, Locke, Bentham, Mill, Kant, Rawls, Friedman, Nozick, Bernstein, Dworkin, Sandel, Walzer, and MacIntyre.

    View more

  • Module content:

    Introduction to Geographic Information Systems (GIS), theoretical concepts and applications of GIS. The focus will be on the GIS process of data input, data analysis, data output and associated technologies. This module provides the foundations for more advanced GIS and Geoinformatics topics. Practical assessments and a mini-project make use of South African and African examples and foster learning and application of concepts aligned to the UN Sustainable Development Goals.

    View more

  • Module content:

    The nature of geographical data and measurement.Application of statistics in the geographical domain. Probability, probability distributions and densities, expected values and variances, Central Limit theorem. Sampling techniques. Exploratory data analysis, descriptive statistics, statistical estimation, hypothesis testing, correlation analysis and regression analysis. Examples used throughout the course are drawn from South African and African case studies and taught within the framework of the UN Sustainable Development Goals.

    View more

  • Module content:

    This module aims to provide students with a working knowledge and skills to learn methods and techniques for collecting, processing and analysing remotely sensed data. Throughout the module, emphasis will be placed on image processing, image analysis, image classification, remote sensing and applications of remote sensing in geographical analysis and environmental monitoring. The module is composed of lectures, readings, practical exercises research tasks and a project or assignments of at least 64 notional hours. In particular, the practical exercises and research tasks incorporate South African examples using satellite remotely-sensed data, as well as field spectral data measurements, to promote understanding of the state of land cover and land use types (e.g. spanning agricultural resources, water resources, urbanization) and how changes over time could impact on the changing climate in accordance with the United Nation’s Sustainable Development Goals.

    View more

  • Module content:

    Database design: the relational model, structured query language (SQL), entity relationship modelling, normalisation, database development life cycle; practical introduction to database design. Databases: advanced entity relationship modelling and normalisation, object-oriented databases, database development life cycle, advanced practical database design.

    View more

  • Module content:

    An overview of systems infrastructure and integration.

    View more

  • Module content:

    Database management: transaction management, concurrent processes, recovery, database administration: new developments: distributed databases, client-server databases: practical implementation of databases.

    View more

  • Module content:

    Descriptive statistics:
    Sampling and the collection of data; frequency distributions and graphical representations. Descriptive measures of location and dispersion.
    Probability and inference:
    Introductory probability theory and theoretical distributions. Sampling distributions. Estimation theory and hypothesis testing of sampling averages and proportions (one and two-sample cases). Supporting mathematical concepts. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.

    View more

  • Module content:

    Students can only get credit for one of the following two modules: STK 120 or STK 121.
    Analysis of variance, categorical data analysis, distribution-free methods, curve fitting, regression and correlation, the analysis of time series and indices. Statistical and economic applications of quantitative techniques: Systems of linear equations: solving and application. Optimisation, linear functions, non-linear functions. Marginal and total functions. Stochastic and deterministic variables in statistical and economic context: producers' and consumers' surplus. Supporting mathematical concepts. Statistical concepts are illustrated using simulation within a data science framework.
    This module is also presented as STK 121, an anti-semester module. This is a terminating module. 

    View more

  • Module content:

    Adjustment and use of following instruments: Plane table, level, compass and theodolite. Elementary site surveying and leveling, tachometry. Definition of survey. Co-ordinate systems and bearing. Connections and polars. Methods of determining points. Elevation. Tachometry.

    View more

Minimum credits: 132

Core             =   132

Core modules

  • Module content:

    Advanced theory and practice of Geographic Information Systems; GIS applications; design and implementation of GIS applications. A project or assignments of at least 64 notional hours. Diverse South African examples will be used to expose the students to various data sources, geospatial analyses, and data representation to support the UN Sustainable Development Goals.

    View more

  • Module content:

    Advanced geoinformatics topics in geovisualisation and geocomputation. A project or assignments of at least 64 notional hours. The topics will be discussed using various local and international examples with the project focusing on at least one of the UN Sustainable Development Goals.

    View more

  • Module content:

    Construction of Raster Geovisualisations, spatial model construction and use, multi-criteria decision analysis. Factor analysis: Principle component analysis. Geostatistics: Spatial dependence modelling, ordinary kriging. Markov chains and cellular Automata, combined models. Examples using data from South Africa are implemented. A project or assignment of at least 64 notional hours.

    View more

  • Module content:

    This module aims to provide students with a working knowledge and skills to learn methods and techniques for collecting, processing and analysing remotely sensed data. Throughout the module, emphasis will be placed on image processing, image analysis, image classification, remote sensing and applications of remote sensing in geographical analysis and environmental monitoring. The module is composed of lectures, readings, practical exercises research tasks and a project or assignments of at least 64 notional hours. In particular, the practical exercises and research tasks incorporate South African examples using satellite remotely-sensed data, as well as field spectral data measurements, to promote understanding of the state of land cover and land use types (e.g. spanning agricultural resources, water resources, urbanization) and how changes over time could impact on the changing climate in accordance with the United Nation’s Sustainable Development Goals.

    View more

  • Module content:

    Spherical trigonometry. Geometrical Geodesy: Datum surfaces and coordinate systems in Geodesy, Calculations on the ellipsoid, Datum transformations. Map projections: Projection principles, distortion determination, construction of conformal, equivalent and equidistant projections, the Transverse Mercator projection and UTM projection of an ellipsoidal earth, projection transformations. Space Geodesy: Time systems, Celestial and observer coordinate systems, Global Navigation Satellite Systems (GNSS), Satellite orbits and orbital parameters, 3¬ D positioning. A project or assignments of at least 64 notional hours. Examples using data from South Africa are implemented.

    View more

  • Module content:

    A project focusing on a local community which is approved by the lecturer and in which one or more of the studied techniques of data acquisition and processing are used to produce an output of spatially referenced information. The project must be fully described in a project report.

    View more


General Academic Regulations and Student Rules
The General Academic Regulations (G Regulations) and General Student Rules apply to all faculties and registered students of the University, as well as all prospective students who have accepted an offer of a place at the University of Pretoria. On registering for a programme, the student bears the responsibility of ensuring that they familiarise themselves with the General Academic Regulations applicable to their registration, as well as the relevant faculty-specific and programme-specific regulations and information as stipulated in the relevant yearbook. Ignorance concerning these regulations will not be accepted as an excuse for any transgression, or basis for an exception to any of the aforementioned regulations. The G Regulations are updated annually and may be amended after the publication of this information.

Regulations, degree requirements and information
The faculty regulations, information on and requirements for the degrees published here are subject to change and may be amended after the publication of this information.

University of Pretoria Programme Qualification Mix (PQM) verification project
The higher education sector has undergone an extensive alignment to the Higher Education Qualification Sub-Framework (HEQSF) across all institutions in South Africa. In order to comply with the HEQSF, all institutions are legally required to participate in a national initiative led by regulatory bodies such as the Department of Higher Education and Training (DHET), the Council on Higher Education (CHE), and the South African Qualifications Authority (SAQA). The University of Pretoria is presently engaged in an ongoing effort to align its qualifications and programmes with the HEQSF criteria. Current and prospective students should take note that changes to UP qualification and programme names, may occur as a result of the HEQSF initiative. Students are advised to contact their faculties if they have any questions.

Copyright © University of Pretoria 2024. All rights reserved.

FAQ's Email Us Virtual Campus Share Cookie Preferences