Jaarboeke

Program: BIng Metallurgiese Ingenieurswese ENGAGE

Kindly take note of the disclaimer regarding qualifications and degree names.
Code Faculty
12136005 Fakulteit Ingenieurswese, Bou-omgewing en Inligtingtegnologie
Credits Duration
Minimum duur van studie: 5 jaar Totale krediete: 584

Programinligting

Let wel: Die Uitgebreide Ingenieurswese-graadprogram (ENGAGE) is ’n verlengde graadprogram wat oor ’n tydperk van 5 jaar strek. Dit is ontwerp om studente wat oor akademiese potensiaal beskik, maar nie aan die toelatingsvereistes vir die vierjaar-Ingenieurswese- program voldoen nie, tegemoet te kom. Studente binne die ENGAGE-program doen die eerste en tweede studiejaar van die vierjaar-Ingenieursweseprogram oor ’n tydperk van drie jaar. Daar is ook verpligte uitgebreide modules in elkeen van die vlak 1-modules. Hierdie uitgebreide modules voorsien studente van die nodige agtergrondkennis en vaardighede om hul ingenieurstudie suksesvol te voltooi. Die kurrikulum vir die vierde en vyfde studiejaar van die ENGAGE-program is identies aan die kurrikulum van die derde en vierde studiejaar van die vierjaar-Ingenieursweseprogram. Studente mag direk aansoek doen om toelating tot die ENGAGE-program.

  • Studente moet vir die hele program registreer, en nie net vir gedeeltes daarvan nie. Die kurrikulum is ’n vaste program met geen keusemodules nie.
  • Bywoning vir alle komponente van die program is verpligtend vir Jaar 1 tot 3. Afwesigheid sal slegs aangeteken word as sodanig indien ’n student ’n wettige siektesertifikaat indien, of in geval van ’n familiekrisis soos bv dood in die direkte familie. In sulke gevalle moet die programadministrasiekantoor onmiddellik dienooreenkomstig in kennis gestel word.
  • Studente wat nie aan die vereiste bywoning van modules en program- komponente voldoen binne die eerste drie jaar van die program nie, sal uitgesluit word uit die program en die student se studies sal opgeskort word.
  • Geen uitgebreide module mag meer as een keer herhaal word nie.
  • Keuring tot die program word gebaseer op die student se Nasionale Senior Sertifikaatuitslae of ekwivalent en ander toelatingstoetse soos deur die fakulteit goedgekeur is.
  • Indien ’n student een van die kernmodules druip (bv Chemie) maar die vergelykende uitgebreide module (bv Addisionele chemie) slaag, sal daar nie van die student verwag word om die uitgebreide module te herhaal nie.
  • Indien ’n student die uitgebreide module (bv Addisionele chemie) druip, maar die vergelykende kernmodule (Chemie) slaag, sal daar nie van die student verwag word om die kernmodule te herhaal nie.
  • Ten einde ’n uitgebreide module te slaag, moet ’n student aan die bywonings- vereiste voldoen en minstens 40% behaal in die deurlopende assessering sowel as die toetskomponent, en ook ’n finale punt van 50% behaal.
  1. Leergange vir die vierde en vyfde studiejare is identies aan onderskeidelik die derde- en die vierdejaarleergange van die Vierjaarprogramme
  2. JPO 110 is ’n voorvereiste vir JPO 120. Krediet vir JPO 110 word verkry met ’n finale punt van ≥50%. Voorwaardelike toelating tot JPO 120: Indien die finale punt vir JPO 110 tussen 45% en 49% is, kan ’n student vir JPO 120 registreer maar krediet vir JPO 110 en JPO 120 kan slegs verkry word as die gesamentlike punt vir JPO 110 en JPO 120 ≥50% is.

Let wel: Dit is ’n vereiste dat studente JCP 203 Gemeenskapsgebaseerde projek 203 suksesvol voltooi as deel van die vereistes vir die BIng-graad. ’n Student het die keuse om gedurende enige van die studiejare vir die module in te skryf, maar verkieslik nie gedurende die eerste of die finale studiejaar nie.

Bevordering tot volgende studiejaar

Bevordering na die tweede semester van die eerste studiejaar en tot die tweede studiejaar  (Ing. 14)

  1. ’n Nuweling-eerstejaarstudent wat aan die einde van die eerste semester in al die voorgeskrewe modules van die program gedruip het, word aan die begin van die tweede semester nie tot die Skool vir Ingenieurswese hertoegelaat nie. ‘n Student wat geregistreer is vir die Uitgebreide Ingenieurswese-graadprogram en wat slegs 8 krediete geslaag het, sal ook uitgesluit word.
  2. ’n Student wat aan al die vereistes van die eerste studiejaar voldoen, word bevorder na die tweede studiejaar.
  3. Studente wat na die November-eksamen nie minstens 70% van die krediete van die eerste studiejaar geslaag het nie, moet weer aansoek doen om toelating indien hulle van voorneme is om hul studies voort te sit. Skriftelike aansoek op die voorgeskrewe vorm moet nie later nie as 11 Januarie by die Studenteadministrasie van die Skool vir Ingenieurswese ingedien word. Laat aansoeke sal slegs in buitengewone gevalle en met goedkeuring van die Dekaan aanvaar word. Indien eerstejaarstudente hertoegelaat word, sal dit volgens die voorwaardes wees soos deur die Toelatingskomitee bepaal.
  4. Studente wat nie in al die voorgeskrewe modules op eerstejaarvlak (vlak 100) geslaag het nie, sowel as studente wat ingevolge Fakulteitsregulasie Ing.14(c) hertoelating verkry het, moet vir die ontbrekende modules op eerstejaarvlak (vlak 100) registreer.
  5. Eerstejaarherhalers mag deur die Dekaan, op aanbeveling van die betrokke departementshoof(de), tot modules van die tweede studiejaar naas die ontbrekende eerstejaarmodules toegelaat word, mits die rooster dit toelaat en sodanige modules nie op eerstejaarmodules volg waarin daar nie geslaag is nie. Studente op die ENGAGE-program moet dieselfde prosedure volg en mag toegelaat word om vir modules te registreer op 200-vlak addisioneel tot die 100-vlak modules wat gedruip was op voorwaarde dat hy/sy aan die voorvereistes vir die module(s) voldoen en daar geen roosterbotsings plaasvind nie. Spesiale toestemming mag deur die Dekaan op aanbeveling van die Departementshoof vir die oorskreiding van die voorgeskrewe aantal krediete verleen word. In geen semester mag die aantal krediete waarvoor goedkeuring verkry is, die normale aantal krediete per semester met meer as 16 krediete oorskry nie.
  6. Studente in Elektriese, Elektroniese en Rekenaaringenieurswese wat vir ’n tweede keer ’n eerstejaarmodule druip, verbeur die voorreg om enige modules vooruit te neem vir daardie jaar.


Let wel:

  1. Elke student moet vanaf die tweede studiejaar ’n goedgekeurde sakrekenaar hê. Dit word ook aanvaar dat elke student vrye en redelike toegang tot ’n persoonlike rekenaar het.
  2. Studente wat beoog om na Mynbou-ingenieurswese oor te skakel, moet let op die bepalings uiteengesit in die leerplan van PWP 121 Werkwinkelpraktyk 121.


Bevordering na die derde studiejaar van die Vierjaarprogram, asook tot die derde en die vierde studiejare van die ENGAGE-program. In die geval van die vierde studiejaar van die ENGAGE-program moet die woorde “eerste” “tweede” en “derde” telkens met die woorde “tweede”, “derde” en “vierde” vervang word, soos van toepassing. (Ing. 15)

  1. ’n Student wat aan al die vereistes van die tweede studiejaar voldoen, word bevorder na die derde studiejaar.
  2. ’n Student moet in al die voorgeskrewe modules op eerstejaarsvlak (vlak 100) geslaag het voor hy of sy tot enige module op derdejaarsvlak (vlak 300) toegelaat word.
  3. Tweedejaarherhalers moet vir al die ontbrekende tweedejaarmodules registreer. ’n Student mag deur die Dekaan, op aanbeveling van die departementshoof(de), tot modules van die derde studiejaar naas die ontbrekende tweedejaarmodules toegelaat word, mits die rooster dit toelaat en sodanige module(s) nie op tweedejaarmodules volg waarin daar nie geslaag is nie. Spesiale toestemming mag deur die Dekaan op aanbeveling van die departementshoof vir die oorskreiding van die voorgeskrewe aantal krediete verleen word. In geen semester mag die aantal krediete waarvoor goedkeuring verkry is, die normale aantal krediete per semester met meer as 16 krediete oorskry nie.
  4. Studente in Elektriese, Elektroniese en Rekenaaringenieurswese wat vir ’n tweede keer ’n tweedejaarmodule druip, verbeur die voorreg om vir daardie jaar enige modules vooruit te neem.
  5. Studente wat beoog om na Mynbou-ingenieurswese oor te skakel, moet let op die bepalings uiteengesit in die leerplan van PWP 121 Werkwinkelpraktyk 121 asook PPY 317 Praktykopleiding 317.


Bevordering na die vierde studiejaar van die Vierjaarprogram, asook tot die vyfde studiejaar van die ENGAGE-program. In die geval van die vyfde studiejaar van die ENGAGE-program moet die woorde “tweede”, “derde” en “vierde” telkens met die woorde “derde”, “vierde” en “vyfde” vervang word, soos van toepassing. (Ing. 16)

  1. ’n Student wat aan al die vereistes van die derde studiejaar voldoen, word bevorder tot die vierde studiejaar. ’n Student wat nie aan al die vereistes voldoen nie, maar vir al die ontbrekende modules kan registreer om die graadprogram te voltooi, mag ten tye van registrasie bevorder word na die vierde studiejaar.
  2. ’n Student moet in al die voorgeskrewe modules van die tweede studiejaar geslaag het voor hy of sy tot enige module van die vierde studiejaar toegelaat word.
  3. Derdejaarherhalers moet vir al die ontbrekende derdejaarmodules registreer. ’n Student mag deur die Dekaan, op aanbeveling van die betrokke departements- hoof(de), tot modules van die vierde studiejaar naas die ontbrekende derdejaar¬modules toegelaat word, mits die rooster dit toelaat en aan die voorvereistes voldoen is. In geen semester mag die aantal krediete waarvoor geregistreer is, die normale aantal krediete per semester met meer as 16 krediete oorskry nie. In uitsonderlike gevalle mag ’n student deur die Dekaan op aanbeveling van die departementshoof toegelaat word om bogenoemde limiet te oorskry.
  4. Studente in Elektriese en Elektroniese Ingenieurswese, asook Rekenaaringenieurswese wat vir die tweede keer ’n derdejaarmodule druip, verbeur die voorreg om enige modules vooruit te neem vir daardie jaar.

Slaag met lof

  1. 'n Student slaag met lof indien
  1. hy of sy geen module van die derde of vierde studiejaar van die vierjaarprogram of die vierde of vyfde studiejaar van die ENGAGE-program moes herhaal nie en in een jaar 'n geweegde gemiddelde van minstens 75% in al die modules van die finale studiejaar behaal het; en
  2. die graadprogram in die minimum voorgeskrewe tydperk van vier jaar vir die vierjaarprogram en vyf jaar vir die ENGAGE-program voltooi is.
  1. Uitsonderlike gevalle tot bogenoemde sal deur die Dekaan oorweeg word.

Minimum krediete: 128

Fundamentele modules

Kernmodules

  • Module-inhoud:

    Algemene inleiding tot anorganiese, analitiese en fisiese chemie. Nomenklatuur van anorganiese en ioniese verbindings, stoïgiometriese berekeninge van chemiese reaksies, redoksreaksies, oplosbaarhede en oplossings, atoomstruktuur, periodisiteit. Molekulêre struktuur en binding, gebruik van die VSEPA-model. Beginsels van reaktiwiteit, elektrochemie, energie en chemiese reaksies, entropie en vrye energie. Toepaslike oefenklasse en praktika.

    Sien meer

  • Module-inhoud:

    Inleidende Wiskunde: simbole, eksponente, logaritmes, hoek in grade, radiaalmaat, goniometrie, differensiasie en integrasie. Beweging in 'n reguit lyn: posisie en verplasing, versnelling. Vektore: optel van vektore, komponente, vermenigvuldigingsvektore. Beweging in twee en drie dimensies: projektielbeweging, sirkelbeweging. Krag en beweging: Newton se wet, krag, wrywing. Kinetiese energie en werk: werk, drywing. Potensiële energie: massamiddelpunt, linieêre momentum. Botsings: impuls en linieêre momentum, elastiese botsings, anelastiese botsings. Rotasie: kinetiese energie van rotasie, wringkrag. Ossilasies en golwe: eenvoudige harmoniese beweging, golftipes, golflengte en -frekwensie, interferensie van golwe, staande golwe, die Doppler-effek. Temperatuur, hitte en die eerste wet van termodinamieka.

    Sien meer

  • Module-inhoud:

    Sosiale wetenskappe: Perspektiewe op die eietydse samelewing ’n Inleiding tot vrae oor die aard van menslike gemeenskappe en eietydse uitdagings. Onderwerpe wat besrpeek sal word sluit in globalisering en vermeerderde verbintenisse; stygende werkloosheid, ongelykheid en armoede; skielike verstedeliking en die moderme stadsvorm; veranderinge in die aard van werk; omgewingsdegradering en spanning tussen volhoubaarheid en groei; veranderinge in globale magsverhoudinge; die toekoms van die nie-staat en supra-nasionale bestuurstrukture; en moontlikhede om menseregte en demokrasie uit te bou. Kritiese vrae word oor moderne self gevra, ook oor sosialiteit, kultuur en identiteit teen die agtergrond van nuwe kommunikasietegnologieë, multikulturele gemeenskappe, geslag-, klas- en rasongelykhede en die herlewing van verouderde vorme van sosiale en politieke identiteit. Hierdie kwessie word vanuit ons ligging in suidelike Afrika en die kontinent bekyk, en berus op sosiale wetenskap-perspektiewe.

    Sien meer

  • Module-inhoud:

    Geesteswetenskappe: Teks, kultuur en kommunikasie Suksesvolle kommunikasie van idees, waardes en tradisies hang van die begrip van beide die letterlike en bedoelde betekenis van tekste af. In hierdie module word studente voorgestel aan ’n verskeidenheid tekste, insluitend oorspronklike literêre en visuele tekste, met die doel om ’n begrip te kweek vir hoe tekstuele betekenisse konstrueer en oor tyd onderhandel is. Studente word aangemoedig om hulleself as produkte – en deelnemers in – hierdie tradisies, idees en waardes te verstaan. Toepaslike voorbeelde sal vanuit, onder andere, die Verligting, Modernisme, Eksistensialisme, Postmodernisme en Postkolonialisme gebruik word.

    Sien meer

  • Module-inhoud:

    'n Projek-gebaseerde benadering word gevolg vir die ontwikkeling van vaardighede wat nodig is vir sukses in ingenieurswese. Vaardighede sluit in kommmunikasie, inligtingstegnologie,tegnologie, akademiese en lewensvaardighede. Die modules word in Engels aangebied. 

    Sien meer

  • Module-inhoud:

    Agtergrondkennis, probleemoplossingsvaardighede, konseptuele verstaan en wiskundige redeneringsvaardighede benodig vir WTW 158.

    Sien meer

  • Module-inhoud:

    'n Projek-gebaseerde benadering word gevolg vir die ontwikkeling van vaardighede wat nodig is vir sukses in ingenieurswese. Vaardighede sluit in kommmunikasie, inligtingstegnologie,tegnologie, akademiese en lewensvaardighede. Die modules word in Engels aangebied.

    Sien meer

  • Module-inhoud:

    Agtergrondkennis, probleemoplossingsvaardighede, konseptuele verstaan en wiskundige redeneringsvaardighede benodig vir WTW 164.

    Sien meer

  • Module-inhoud:

    Agtergrondkennis, probleemoplossingsvaardighede, konseptuele verstaan en fisiese redeneringsvaardighede benodig vir FSK 116/176.

    Sien meer

  • Module-inhoud:

    Agtergrondkennis, probleemoplossingsvaardighede, konseptuele verstaan en fisiese redeneringsvaardighede benodig vir CHM 171/172.

    Sien meer

  • Module-inhoud:

    *Hierdie module is ontwerp vir eerstejaar-ingenieurstudente. Studente sal nie vir meer as een van die volgende modules krediet ontvang vir hul graad nie: WTW 158, WTW 114, WTW 134, WTW 165.
    Inleiding tot vektoralgebra. Funksies, limiete en kontinuïteit. Differensiaalrekening van eenveranderlike funksies, tempo van verandering, krommesketsing, toepassings. Die middelwaardestelling, L'Hospital se reël. Die onbepaalde integraal, integrasie.

    Sien meer

  • Module-inhoud:

    *Hierdie module is ontwerp vir eerstejaar-ingenieurstudente. Studente sal nie vir meer as een van die volgende modules krediet ontvang vir hul graad nie: WTW 146, WTW 148, WTW 124 en 164.

    Vektoralgebra met toepassings op lyne en vlakke in die ruimte, matriksalgebra, stelsels van lineêre vergelykings, determinante, komplekse getalle, faktorisering van polinome en keëlsnitte.  Integrasietegnieke, oneintlike integrale. Die bepaalde integraal, hoofstelling van Calculus. Toepassings van integrasie. Elementêre magreekse en die stelling van Taylor. Vektorfunksies, ruimtekrommes en booglengtes. Tweedegraadsoppervlakke en meer-veranderlike funksies.

    Sien meer

  • Module-inhoud:

    *Slegs bywoningsmodule Die module word aangebied aan die einde van die eerste studiejaar en duur ten minste 8 dae, waartydens opleiding in die volgende werkswinkels verskaf word: elektroniese projekte, paneelbedrading, elektriese motors en skakeltuig, algemene masjiene, sweiswerk, draaiwerk en plaatmetaalwerk. Elke student se vordering word na elke werkswinkel geassesseer.

    Sien meer

Minimum krediete: 120

Kernmodules

  • Module-inhoud:

    Elektriese groothede, eenhede, definisies, konvensies. Elektriese simbole, ideale en praktiese stroom- en spanningsbronne, beheerde bronne. Ohm se wet in weerstandsbane, Kirchoff se stroom- en spanningswette, serie- en parallelweerstande, spanning- en stroomverdeling, lusstroom- en puntspanningsmetodes. Netwerkstellings: lineariteit, superposisie, Thevenin- en Norton-ekwivalentebane, brontransformasie, drywingsberekening, maksimum drywingsoordrag. Energiestoorelemente: stroom, spanning, drywing en energie in induktore en kapasitore, serie- en parallelkombinasies van induktore en kapasitore. Ideale operasionele versterkers en toepassings: omkeer- en nie-omkeerversterkers, sommeerders, stroombronne, integreerders.

    Sien meer

  • Module-inhoud:

    Die module word ingesluit in alle voorgraadse akademiese programme wat deur die Fakulteit aangebied word. Doelwitte: uitvoering van ‘n gemeenskapsverwante projek gerig op die bereiking van ’n voordelige effek op ’n gekose deel van die samelewing; ontwikkeling van ‘n bewuswording van persoonlike, sosiale en kulturele waardes en ’n begrip van sosiale aspekte; en ontwikkeling van lewensvaardighede Assessering: projekvoorstel, geskrewe vorderingsverslae, eweknie-assessering, assessering deur die gemeenskap, voordrag, verslag in die vorm van ’n webjoernaal.

    Sien meer

  • Module-inhoud:

    Agtergrondkennis, probleemoplossingsvaardighede, konseptuele verstaan en redeneringsvaardighede benodig vir EBN 111/122.

    Sien meer

  • Module-inhoud:

    Agtergrondkennis, probleemoplossingsvaardighede, konseptuele verstaan, tekenvaardighede en redeneringsvaardighede benodig vir MGC 110.

    Sien meer

  • Module-inhoud:

    Agtergrondkennis, probleemoplossingsvaardighede, konseptuele verstaan en redeneringsvaardighede benodig vir NMC 113/123.

    Sien meer

  • Module-inhoud:

    Agtergrondkennis, probleemoplossingsvaardighede, konseptuele verstaan en redeneringsvaardighede benodig vir SWK 122.

    Sien meer

  • Module-inhoud:

    Vryhandsketstekeninge wat die volgende dek: perspektief-, isometriese en ortografiese tekeninge. Tekenkonvensies, grafiese tegnieke en samestellingstekeninge. Tekening-evaluering en foutopsporing. Ware lengtes, vlakke, projeksies en deurdringingskrommes. Praktiese toepassings van hierdie tegnieke. Inleiding tot teken van komponente op die rekenaar, insluitend maatskrywing, arsering en detaillering. Inleiding tot basiese vervaardigingsprosesse insluitende primêre (giet, smee en ekstrusie) en sekondêre (boor, draai, frees, slyp, trekfrees en saag) vervaardigingsprosesse.

    Sien meer

  • Module-inhoud:

    Inleiding tot materiale: die familie van materiale, atoomstruktuur en bindingstipes, kristaltipes en ruimtelike rangskikking van atome, rigtings en vlakke in kristalle, kristaldefekte, diffusie in vaste stowwe. Meganiese eienskappe van materiale: spanning en vervorming, meganiese toetsing (sterkte, smeebaarheid, hardheid, taaiheid, vermoeidheid, kruip), plastiese vervorming, vaste-oplossingverharding, herkristallisasie. Polimeriese materiale: polimerisasie en produksiemetodes, tipes polimeriese materiale en hul eienskappe. Korrosie van metale: meganismes en tipes korrosie, korrosietempo, beheer van korrosie. Die hittebehandeling van staal: Fe-C fasediagram, ewewigsafkoeling, verharding en tempering van staal, vlekvry staal. Komposiete materiale: Inleiding, vesel versterkte polimeriese komposiete, beton, asfalt, hout.

    Sien meer

  • Module-inhoud:

    Ekwivalente kragstelsels, resultante. Newton se wette, eenhede. Inwerking van kragte op partikels. Starre liggame: beginsel van oordraagbaarheid, resultante van parallelle kragte. Vektor- en skalare momente. Verwantskap tussen vektor- en skalare momente. Koppels. Ekwivalente kragstelsels op starre liggame. Resultante van kragte op starre liggame. Ewewig in twee en drie dimensies. Hooke se wet. Vakwerke en raamwerke. Sentroïdes en tweede moment van area. Balke: verspreide kragte, skuifkrag, buigmoment, metode van snitte, verwantskap tussen las, skuifkrag en buigmoment.

    Sien meer

  • Module-inhoud:

    Calculus van meerveranderlike funksies, rigtingsafgeleides. Ekstreemwaardes.  Meervoudige integrale, pool-, silindriese en bolkoördinate. Lynintegrale en die stelling van Green. Oppervlakintegrale en die stellings van Gauss en Stokes.

    Sien meer

  • Module-inhoud:

    Numeriese integrasie. Numeriese metodes om die oplossing te benader van nie-lineêre vergelykings, stelsels vergelykings (lineêr en nie-lineêr), differensiaalvergelykings en stelsels van differensiaalvergelykings. Direkte metodes om lineêre stelsels vergelykings op te los.

    Sien meer

Minimum krediete: 138

Kernmodules

  • Module-inhoud:

    Ingenieurstelsels is dikwels onderworpe aan variasie, onsekerheid en onvolledige inligting. Wiskundige statistiek verskaf die basis vir die effektiewe hantering en kwantifisering van hierdie faktore. Hierdie module sal ’n inleiding verskaf tot die konsepte van wiskundige statistiek en sal die volgende sillabustemas insluit: data-analise, waarskynlikheidsteorie, stogastiese modellering, statistiese inferensie en regressie-analise.

    Sien meer

  • Module-inhoud:

    Oorgangsverskynsels in RC, RL en RLC stroombane: natuurlike respons en traprespons. Wisselstroom- (WS) stroombane: fasors, impedansies en drywing in WS-stroombane. Die toepassing van Ohm se wet, Kirchoff se stroomwet, matriksmetodes en Thevenin- en Norton-ekwivalente vir sinusvormige gestadigdetoestand-analises. Driefasestroombane: gebalanseerde driefasestroombane, ster-delta-konfigurasies en berekening van driefasedrywingsoordrag. Magnetiesgekoppelde stoombane: wedersydse induktansie, koppelfaktor, transformators, ideale transformators en outotransformators. Toepassing van stroombaanteorie op 'n induksiemotor: basiese beginsels van induksiemotors, ekwivalente stroombaan en analise daarvan, berekening van drywing en wringkrag deur die toepassing van Thevenin se wet. Sinoptiese inleiding tot ander tipes motors.

    Sien meer

  • Module-inhoud:

    Kristallografie en interne orde in minerale (ruimtegroepe, eenheidselle, X-straaldiffraksiedata). Binding, mineraalchemie en vaste oplossing (tipes vaste oplossing, berekening van mineraalformules en katioonvalensie). Subsolidusreaksies en defekte in minerale (termodinamiese basis, defekte, belang van subsolidusreaksies). Klassifisering in kristalstrukture van minerale. Mineralogiese instrumentasie en analise. Vernaamste rotstipes en hulle klassifisering. Mineralogiese aspekte van ertsbereiding.

    Sien meer

  • Module-inhoud:

    Gevorderde bladtoepassings: Veldname, liniêre algebra, oplossing van stelselvergelykings, regressie, interpolasie, optimisasie en tabelmanipulasie. Basiese gestruktureerde programmering: Lisvorming, vertakking, subroetines, iterasie, lees en skryf van datalêers. Ontwikkeling, kodering en oplos van eenvoudige programme in hoëvlak programmeringstaal. Programbeginsels word deur middel van wiskundige konsepte soos beperkinge, differensiasie, integrasie en liniêre algebra aangetoon. Gestruktureerde programmering deur gebruikmaking van funksies en beskikbare toepassings. Basiese grafiese uitsette (kartering word ook gedek). Verskillende inligtingsbronne, soek en bestuur van inligting. Gebruik van databasisse. Ontwikkeling van webblaaie. Hardewareinteraksie en beheer van toerusting en stelsels.

    Sien meer

  • Module-inhoud:

    Kinetika van stelsels van partikels, Newton se Tweede Wet veralgemeen vir ’n stelsel van partikels, tempo van verandering in momentum- en hoekmomentumverwantskappe, arbeid-energie-verwantskappe, behoudswette, gestadigde massavloei. Vlakkinematika van starre liggame, rotasie, translasie, algemene 2D-beweging, relatiewe bewegingsanalise. Traagheidsmomente en -produkte. Vlakkinetika van starre liggame, bewegingsvergelykings, rotasie, translasie, algemene 2D-beweging, arbeidenergieverwantskappe. Vibrasie en tydresponsie.

    Sien meer

  • Module-inhoud:

    Kommunikeer effektief, beide mondelings en op skrif, met ingenieursgehore en die breër gemeenskap. Geskrewe kommunikasie deur middel van toepaslike strukture, moderne of elektroniese kommunikasiemiddele; styl en taal vir die doel en die gehoor; gebruik effektiewe grafiese ondersteuning; gebruik inligtingsverskaffingsmetodes wat deur ander betrokke by ingenieurswese gebruik gaan word; voldoen aan die vereistes van die gehoor. Effektiewe mondelinge kommunikasie deur middel van die toepaslike struktuur, styl en taal; toepaslike visuele materiaal, kom vloot oor; voldoening aan die vereistes van die gehoor. Gehore kan wees mede-ingenieurs, bestuur en ander wat toepaslike akademiese of professionele diskoers gebruik. Getikte verslae strek tussen kort (300-1000 woorde plus diagramme) tot lang (10 000 tot 15 000 woorde plus tabelle, diagramme, verwysings en aanhangsels) wees en dek materiaal op uittreevlak. Metodes om inligting te verskaf sluit die bekende metodes in die dissipline is, byvoorbeeld ingenieurstekeninge en vakspesifieke metodes.

    Sien meer

  • Module-inhoud:

    Fasediagramme, fases en vaste oplossings. Die hittebehandeling van staal (fase-ewewigte, diffusie- en martensitiese transformasies van austeniet, verharding en tempering, verhardbaarheid, die toepassing van IT- en CCT-diagramme, hittebehandelings). Staaltipes en -klassifikasie. Gietysters (wit, grys, smeebare en sferiese grafiet gietyster). Roesvryestale (ferritiese, martensitiese, austenitiese en dupleks tipes).

    Sien meer

  • Module-inhoud:

    Die eerste, tweede en derde wette van termodinamika, entalpie en warmtekapasiteit. Die kriteria vir ewewig, Gibbs vrye energie, chemiese potensiaal, parsiële molare Gibbs vrye energie, aktiwiteit, aktiwiteitskoëffisiënt en die ewewigskonstante. Oplossingtermodinamika van ideale en nie-ideale oplossings, asook oplossingmodelle. Ellingham-, Kellogg- en Pourbaix-diagramme. Toepassing van hierdie termodinamiese beginsels op metallurgiese prosesse. Toepassings sluit in: stoïgiometrie en massabalans-probleme, asook die berekening en opstelling van energiebalanse.

    Sien meer

  • Module-inhoud:

    Lineêre algebra, eiewaardes en eievektore met toepassings op stelsels differensiaalvergelykings van eerste en tweede orde. Rye en reekse, konvergensietoetse. Magreekse met toepassings op gewone differensiaalvergelykings met veranderlike koëffisiënte. Fourier-reekse met toepassings op parsiële differensiaalvergelykings soos die potensiaal-, hitte- en golfvergelykings.

    Sien meer

  • Module-inhoud:

    Teorie en oplosmetodes vir lineêre differensiaalvergelykings asook vir stelsels lineêre differensiaalvergelykings. Teorie en oplosmetodes vir eerste orde nie-lineêre differensiaalvergelykings. Die Laplace-transform met toepassing in differensiaalvergelykings. Toepassing van differensiaalvergelykings op modelleringsprobleme.

    Sien meer

Minimum krediete: 144

Kernmodules

  • Module-inhoud:

    Program- en sisteemingenieurswese
    Konsepte: Toepassing van projekbestuur, sisteemdenke, sisteembenadering, produk, sisteem- en projeklewensiklusse, projekfases en spesifikasiepraktyke. Ontwikkelingsmodelle: stellasie-ontwikkeling, projekhandves, sisteemingenieurswesebestuur en lewensiklus-eienskappe. Beplanning en skedulering: taakdefinisies, werkstrukture, tydsberaming, Gantt-kaarte, kritiese roetes, hulpbronhantering. Koste en begroting: kosteberaming, projek-lewensiklusonkoste, werkgoedkeuring. Beheer: projekorganisering. Regsaspekte: kontrakte, intellektuele eiendom. Gevallestudies en semesterprojek.
    Ingenieursekonomie
    Besluitneming in ’n ingenieursomgewing. Toewysing van koste. Geld-tyd-verhoudings (diskrete renteformules, tabelle, finansiële sakrekenaar, Excel). Gronde vir verglyking van alternatiewe (huidige waarde, jaarlikse waarde). Besluitneming rondom alternatiewe voor en na belasting.

    Sien meer

  • Module-inhoud:

    Twee uittreevlakuitkomste (ELO)’ van ECSA word aangespreek en beide moet binne dieselfde semester geslaag word. ELO7: Toon kritiese bewustheid van die invloed van die ingenieursaktiwiteit op die sosiale, industriële en fisiese omgewing. Die geskiedenis van ingenieurswese wêreldwyd en in Suid-Afrika. Mees belangrike ingenieursprojekte wêreldwyd en in Suid-Afrika. Die invloed van tegnologie op die samelewing. Beroeps- en openbare gesondheid en -veiligheid. Invloede op die fisiese omgewing. Die persoonlike, sosiale, kulturele waardes en vereistes van dié wat deur ingenieursaktiwiteite geraak word. Die kombinasie van sosiale, werkplek (industriële) en fisiese omgewingsfaktore wat toepaslik in die dissipline van die kwalifikasie is. ELO8: Toon vaardigheid om effektief aan ’n klein projek as individue te werk, asook in spanne en in multidissiplinêre omgewings. Identifiseer en fokus op doelstellings. Werk strategies. Handel take effektief af. Handig afgehandelde werk betyds in. Effektiewe spanwerk: Maak individuele bydrae binne spanaktiwiteit; voer kritiese take uit; verbeter kollegas se werk; trek voordeel uit die ondersteuning van ander spanlede; kommunikeer effektief met ander spanlede. Multidissiplinêre werk: Bekom werkskennis van kollegas se werk; gebruik ’n sisteemingenieurswese-benadering; kommunikeer oor die grense van ander dissiplines heen. Verslagdoening en voorlegging oor spanprojek. Take vereis samewerking tussen ten minste twee dissiplines.

    Sien meer

  • Module-inhoud:

    Inleiding: Vloeistowwe en gasse, druk, viskositeit, temperatuur, warmte. Inleiding tot Navier-Stokes- en kontinuïteitsvergelykings. Definisies en eienskappe van vloeiers, vloeierstatika, vloeierdinamika, Bernoulli-vergelykings. Vloeimetings. Dimensionele analise: krag, sleur, Reynolds-getal, kragkoëffisiënt, drywing. Stroming in pype en kanale: wrywingskoëffisiënt en Reynolds-getal, drukval; laminêre, turbulente en oorgangstroming, stroming oor liggame: sleur en hefkrag. Eksperimentele tegnieke in vloeiermeganika. Inleiding tot basiese termodinamiese warmte-oordragkonsepte, geleiding (gestadigde en ongestadigde toestande), vinne, toepassings.

    Sien meer

  • Module-inhoud:

    Kinetika en termodinamika van elektrochemiese reaksies wat van metallurgiese belang is. Gebruik van ewewigsdiagramme om moontlike reaksieprodukte te identifiseer. Toepassing van hierdie beginsels op metallurgiese voorbeelde, insluitende korrosie, loging en elektrometallurgie. Invloed van substraatsamestelling, elektrolietsamestelling, onsuiwerhede, reaksieprodukte en roering op kinetika.

    Sien meer

  • Module-inhoud:

    Hierdie inligting is slegs in Engels beskikbaar.

    Students attend and participate in five half-day excursions to metallurgical operations. Assessment is based on written reports and oral presentations. The excursions include visits to hydrometallurgical, pyrometallurgical, minerals processing and materials processing plants.

    Sien meer

  • Module-inhoud:

    Voordele van hidrometallurgie vergeleke met ander ekstraksiemetodes. Eenheidsprosesse in hidrometallurgie. Chemiese beginsels van hidrometallurgie. Die chemie van belangrike metale en loogmiddels. Toepassing van die chemiese beginsels op die volgende: loging; suiwering en opgradering van loogoplossings (presipitasie, vloeistofekstraksie, ioonruiling, geaktiveerde koolstof); produkherwinning uit die oplossing (presipitasie, reduksie). Toepaslike analitiese metodes.

    Sien meer

  • Module-inhoud:

    Binêre en ternêre fasediagramme. Diffusie in legerings (gestadigd en ongestadigd, vaste oplossings, korrelgrense, homogenisering). Stolling (suiwer metale en legerings; gietblokke, gietstukke en sweise; segregasie, porositeit en eutektiese stolling). Metallografiese en analitiese metodes (diffraksie, elektronmikroskopie). Versterking deur presipitasie en vaste oplossings (beginsels, en toepassing op aluminium-, magnesium-, koper- en nikkelbasislegerings).

    Sien meer

  • Module-inhoud:

    Ontwrigtings en vervorming (defekte in kristallyne materiale, beweging en elastiese energie van ontwrigtings, verskillende kristalroosters, oorsprong van en versterking deur ontwrigtings). Sterkte van ingenieursmateriale (trektoets, plastiese vervorming van enkelkristalle en polikristallyne materiale, hardheid, resspanning). Vervorming deur kruip (primêre en sekondêre kruip, invloed van spanning en temperatuur, faling deur kruip). Inleiding tot breukmeganika (Griffith-kriterium, spanningsintensiteit, breuktaaiheid, vermoeidheid). Falingsondersoeke. Warm en koue walsing van metale.

    Sien meer

  • Module-inhoud:

    Perspektief op mineraalprosessering (ekonomiese belang, ekonomiese aard van mineraalafsettings, mineraaleienskappe en –analise, funksies van mineraalprosessering). Analise van bevryding (belang en meting van bevryding; meting van partikelgrootte). Komminusie (teorie en beginsels, vergruisers, meulens). Sifting en klassifikasie (industriële siwwe en siklone).Konsentreringsprosesse (swaartekragskeiding, digtemediumskeiding). Skuimflottasie.

    Sien meer

  • Module-inhoud:

    Oorsig van pirometallurgiese prosesroetes, tipes reaksies, en reaktorontwerpe. Oorsig van toepaslike termodinamiese beginsels (ewewigskonstantes, Henriaanse en Raoultiese aktiwiteite en aktiwiteitskoëffisiënte).  Slakbasisiteit en -viskositeit. Energie en reduktante. Oorsig van pirometallurgiese skeidingsbeginsels (dampfase, vastetoestand en vloeistof-vloeistof roetes). Voorbeelde van pirometallurgiese skeidingsprosesse (yster- en staalvervaardiging, smelting en omsetting van sulfiede, ferrolegerings).

    Sien meer

  • Module-inhoud:

    *Slegs bywoningsmodule Gedurende of aan die einde van die tweede studiejaar deurloop studente in Metallurgiese Ingenieurswese minstens ses weke voorgeskrewe praktykopleiding in die bedryf. ’n Bevredigende verslag oor praktykopleiding moet binne een week na registrasie, by die Fakulteitsadministrasie ingedien word. In uitsonderlike omstandighede kan die Dekaan goedkeuring verleen dat die voorgeskrewe minimum tydperk verkort word.

    Sien meer

  • Module-inhoud:

    Klassifisering, vereistes en eienskappe van vuurvaste materiale. Vervaardigings-beginsels. Spesifisering en toetsing van vuurvaste materiale. Belangrikste vuurvaste stelsels (silika, aluminosilikate, alumina, magnesia, magnesia-chroom, magnesia-koolstof, doloma, zirkon, zirkonia, silikonkarbied en grafiet) en hulle toepassings. Beginsels van ternêre fasediagramme en toepassing daarvan op vuurvaste sisteme en interaksies tussen slak, metaal en vuurvaste materiaal.

    Sien meer

Minimum krediete: 136

Kernmodules

  • Module-inhoud:

    Vereiste om deurgaanse vaardighede te behou en op hoogte van die jongste metodes en tegnieke te bly. ECSA-gedragskode. Deurlopende Professionele Ontwikkeling, ECSA-uitkomste, ECSA-proses en redes om as CEng en PrEng te registreer. Toon ’n begrip vir die professionele ontwikkelingsisteem. Aanvaar verantwoordelikheid vir eie optrede. Toon oordeelvermoë mbt besluitneming gedurende probleemoplossing en ontwerp. Beperk besluitneming tot huidige vaardigheidsareas. Gaan sinvol om en oordeel oor etiese aspekte binne gevallestudies. Toon vaardigheidsgrense in probleemoplossing en ontwerp aan. Gevallestudies tipies aan ingenieurspraktyk-situasies waarin die student waarskynlik sal deelneem.

    Sien meer

  • Module-inhoud:

    Ekstraksieroetes en die ekstraktiewe metallurgie van metale soos goud, koper, sink, mangaan, nikkel, kobalt, uraan en die platinumgroepelemente, uit ertse en sekondêre bronne. Toepassing van termodinamika en reaksiekinetika (insluitende kinetiese data uit laboratoriumtoetse) om ekstraksieroetes te verstaan en te optimeer, asook keuse van die grootte van reaktore. Omgewingsimpak van prosesseringsroetes.

    Sien meer

  • Module-inhoud:

    Bepaling van die grootte, toepassing, en bepaling van die effektiwiteit van die mees algemeen gebruikte eenheidsoperasies, insluitende vergruising, sifting, klassifikasie, vermaling, swaartekragskeiding, digtemediumskeiding, magnetiese skeiding en indikking.

    Sien meer

  • Module-inhoud:

    Ontwerpfilosofie en die ontwerpproses; fases van aanlegontwerp en hulle onderlinge verwantskappe. Beginsels van projekbeplanning en -bestuur. Ontwerp van eenhede en prosesse, simulering, ekonomiese evaluering en optimering soos toegepas op die metallurgiese bedryf. Voltooiing van 'n prosesontwerpprojek, verslagdoening, mondelinge aanbiedings en vervaardiging van 'n skaalmodel.

    Sien meer

  • Module-inhoud:

    Elemente van metallurgiese prosesbeheer (beginsels, keuse van proporsioneel-integrale beheerder, identifisering van beheerde en gemanipuleerde veranderlikes en steurnisse). Ongestadigde en gestadigde hitte-oordrag in metallurgie (vorming van stollingslae, verhitting en afkoeling van komponente). Beginsels van reaksiekinetika in pirometallurgie (tipes en identifisering van tempobepalende stappe, kwantifisering van totale reaksietempo).

    Sien meer

  • Module-inhoud:

    Inleiding tot sweisprosesse en hegtingsprosesse. Sweis van koolstale, roesvryestale, aluminium en aluminiumlegerings. Die opstel en kwalifisering van sweisprosedures. Verwerking van vloeimetaal (gietprosesse, stoling van gietstukke en gietvormontwerp). Verwerking deur vervorming (smee, strangpers en rol), verwerking van plaatmetaal en oppervlakbehandeling. Die identifikasie en voorkoming van defekte.

    Sien meer

  • Module-inhoud:

    *Slegs bywoningsmodule Gedurende of aan die einde van die derde studiejaar deurloop studente in Metallurgiese Ingenieurswese minstens ses weke voorgeskrewe praktykopleiding in die bedryf. ’n Bevredigende verslag oor praktykopleiding moet binne een week na registrasie, by die departement ingedien word. In uitsonderlike omstandighede kan die voorsitter van die Skool vir Ingenieurswese goedkeuring verleen dat die voorgeskrewe minimum tydperk verkort word.

    Sien meer

  • Module-inhoud:

    Literatuursoektog (gebruik van elektroniese databasisse van publikasies, formulering van soekstrategieë).  Hipotesestelling en voorlopige eksperimentele beplanning (identifisering van navorsingvraag en hipotesestelling, voorstel van kritiese eksperimente, evaluering van doenbaarheid van moontlike eksperimentele benaderings). Literatuuroorsig (kritiese evaluering van gepubliseerde inligting, samevoeging van beskikbare inligting in 'n koherente argument, geskrewe en mondelinge verslagdoening). Finale eksperimentele beplanning (formulering van eksperimente, met aandag aan kalibrering, onsekerheid, betroubaarheid en veiligheid).

    Sien meer

  • Module-inhoud:

    Uitvoering van 'n navorsingsprojek: eksperimentering (met aandag aan veiligheid, betroubaarheid, kalibrering en herhaalbaarheid); analise van resultate om data op te lewer (met statistiese analise van onsekerheid); interpretering van die data (om die gestelde hipotese te toets); geskrewe verslagdoening oor die resultate (met opgedateerde literatuuroorsig, beskrywing van eksperimentele benadering, ingewinde data, gevolgtrekking en wetenskaplike en nywerheidsimplikasies); mondelinge en plakkaataanbiedings.

    Sien meer


Die inligting wat hier verskyn, is onderhewig aan verandering en kan na die publikasie van hierdie inligting gewysig word.. Die Algemene Regulasies (G Regulasies) is op alle fakulteite van die Universiteit van Pretoria van toepassing. Dit word vereis dat elke student volkome vertroud met hierdie regulasies sowel as met die inligting vervat in die Algemene Reëls sal wees. Onkunde betrefffende hierdie regulasies en reels sal nie as ‘n verskoning by oortreding daarvan aangebied kan word nie.

Copyright © University of Pretoria 2024. All rights reserved.

FAQ's Email Us Virtual Campus Share Cookie Preferences