Code | Faculty |
---|---|
02133253 | Fakulteit Natuur- en Landbouwetenskappe |
Credits | Duration |
---|---|
Minimum duur van studie: 3 jaar | Totale krediete: 414 |
Prof R Anguelov [email protected] | +27 (0)124202520 |
Die volgende persone sal vir toelating oorweeg word: ‘n kandidaat wat oor ‘n sertifikaat beskik wat deur die Universiteit as gelykstaande aan die vereiste Graad 12-sertifikaat met toelating vir graaddoeleindes aanvaar word; ‘n kandidaat wat ‘n gegradueerde van ‘n ander tersiêre instelling is of die status van ‘n gegradueerde van so ‘n instelling geniet; en ‘n kandidaat wat ‘n gegradueerde van ‘n ander fakulteit van die Universiteit van Pretoria is.
Lewensoriëntering word uitgesluit by die berekening van die Toelatingspuntteling (TPT).
Graad 11-uitslae word gebruik vir die voorlopige toelating van voornemende studente. Finale toelating is gebaseer op Graad 12-uitslae.?
Minimum vereistes | ||||||||
Prestasievlak | ||||||||
Afrikaans of Engels | Wiskunde | TPT | ||||||
NSC/IEB | HIGCSE | AS-Level | A-Level | NSC/IEB | HIGCSE | AS-Level | A-Level | |
5 | 3 | C | C | 6 | 2 | B | B | 32 |
Kandidate wat nie aan die minimum toelatingsvereistes van die BSc (Togepaste Wiskunde)-program hierbo voldoen nie, mag oorweeg word vir toelating tot die BSc – Verlengde program hieronder. Die BSc – Verlengde program vind plaas oor ‘n periode van vier jaar in plaas van die normale drie jaar.
BSc – Verlengde program vir die Wiskundige Wetenskappe:
Minimum vereistes | |||||||||
Prestasievlak | |||||||||
| Afrikaans of Engels | Wiskunde | TPT | ||||||
NSC/IEB | HIGCSE | AS-Level | A-Level | NSC/IEB | HIGCSE | AS-Level | A-Level | ||
BSc – Verlengde program vir die Wiskundige Wetenskappe | 4 | 3 | D | D | 5 | 3 | C | C | 26 |
'n Student moet al die minimum voorgeskrewe en keusemodules slaag soos uiteengesit aan die einde van elke jaar in ‘n program asook die totale aantal vereiste krediete behaal om te voldoen aan die betrokke graadprogramvereistes. Verwys asseblief na die kurrikulum soos uiteengesit. Ten minste 144 krediete moet op 300-/400-vlak wees, of andersins soos aangedui deur die kurrikulum. Die minimum modulekrediete wat nodig is om te voldoen aan graadvereistes word uiteengesit aan die einde van elke studieprogram. Met betrekking tot die BSc-programme soos aangedui sal ’n maksimum van 150 krediete op 100-vlak erken word.
’n Student mag in konsultasie met die Hoof van die Departement en in oorleg en met die toestemming van die Dekaan, voorgeskrewe modules volg of vervang met modules wat nie aangedui is in die BSc- driejaarstudieprogramme nie en wat die ekwivalent of die maksimum van 36 modulekrediete is. Dit is egter wel belangrik dat die totale aantal voorgeskrewe modulekrediete binne die loop van die graadprogram voltooi word. Die Dekaan mag in die verband, en op aanbeveling van die Departementshoof, afwykings goedkeur. Met betrekking tot die BSc-programme soos aangedui mag ’n student nie vir meer as 75 modulekrediete per semester op eerstejaarvlak registreer nie. ’n Student word slegs in oorleg met en met toestemming van die Dekaan toegelaat om te registreer vir 80 krediete in die eerste semester gedurende die eerste jaar indien die student ’n finale punt van nie minder nie as 70% vir Graad 12 Wiskunde en ’n TPT van 34 of meer behaal het vir die NSS.
Studente wat alreeds in besit van ’n baccalaureusgraad is, kan nie erkenning kry vir modules waarvan die inhoud oorvleuel met modules van die graad wat reeds toegeken is nie. Verder sal krediete ook nie vir meer as 50% oorweeg word nie vir krediete geslaag tydens studie vir ’n vorige onvoltooide graad. Geen krediete op die finale jaar of op 300- en 400-vlak sal goedgekeur word nie.
'n Student word tot die volgende studiejaar bevorder mits hy of sy 100 van die vereiste krediete wat in 'n studiejaar voorgeskryf word, slaag tensy die Dekaan op aanbeveling van die departementshoof anders besluit. 'n Student wat nie aan die vereistes vir bevordering tot die volgende studiejaar voldoen nie, behou krediete vir die modules waarin hy of sy geslaag het, en mag deur die Dekaan, op aanbeveling van die departementshoof, tot hoogstens 48 krediete van die modules van die volgende studiejaar toegelaat word, mits dit by die lesing-/eksamenrooster inpas.
'n Student slaag met lof indien hy of sy in een enkele akademiese jaar alle vereiste modules op 300-vlak of hoër slaag en 'n geweegde gemiddelde van minstens 75% in daardie modules behaal, met dien verstande dat 'n subminimum van 65% behaal word in die betrokke modules wat vereis word.
Minimum krediete: 138
Minimum krediete:
Fundamenteel = 12 krediete
Kern = 96 krediete
Keuse = 32 krediete
Addisionele inligting:
Studente wat nie kwalifiseer vir AIM 102 nie, moet vir AIM 111 en AIM 121 registreer.
Keusemodules: ’n Minimum van 54 keusekrediete op 100- tot 300-vlak kan gekies word uit enige WTW- en WST-modules. Die oorblywende keusekrediete op 100- tot 300-vlak kan gekies word uit enige ander modules uit die lys van modules van hierdie fakulteit.
Module-inhoud:
Verkry, evalueer, verwerk, bestuur en bied inligtingsbronne vir akademiese doeleindes aan deur gebruik te maak van toepaslike tegnologie. Pas effektiewe soekstrategieë toe in verskillende tegnologiese omgewings. Demonstreer die etiese en regverdige gebruik van inligtingsbronne. Integreer 21ste-eeuse kommunikasie met die bestuur van akademiese inligting.
Module-inhoud:
Vind, evalueer, prosesseer, bied inligtingbronne aan en bestuur hulle vir akademiese doeleindes deur die gepaste tegnologie te gebruik.Module-inhoud:
Pas effektiewe soekstrategieë toe in verskillende tegnologiese omgewings. Demonstreer die etiese en regverdige gebruik van inligtingsbronne. Integreer 21ste-eeuse kommunikasie met die bestuur van akademiese inligting.Module-inhoud:
*Hierdie inligting is slegs in Engels beskikbaar.
The module aims to equip students with the ability to cope with the reading and writing demands of scientific disciplines.
Module-inhoud:
Karakterisering van ‘n stel metings: Grafiese en numeriese metodes. Ewekansige steekproefneming. Teorie van waarskynlikheid. Diskrete en kontinue stogastiese veranderlikes. Waarskynlikheidsverdelings. Voortbringende funksies en momente.Module-inhoud:
Steekproefverdelings en die sentrale limietstelling. Statistiese inferensie: Punt- en intervalberaming. Hipotesetoetsing met toepassings in een- en tweesteekproefgevalle. Inleidende metodes vir: Lineêre regressie en korrelasie, analise van variansie, kategoriese data-analise en nie-parametriese metodes Identifikasie, gebruik en interpretasie van statistiese rekenaarpakette en statistiese tegnieke.
Module-inhoud:
*Hierdie module dien as voorbereiding vir studente met Wiskunde as hoofvak (ingesluit alle studente wat beplan om vir WTW 218 en WTW 220 in te skryf.) Studente sal nie vir meer as een van die volgende modules krediet ontvang vir hul graad nie: WTW 114, WTW 158, WTW 134, WTW 165.
Funksies, limiete en kontinuïteit. Differensiaalrekening van eenveranderlike funksies, tempo van verandering, krommesketsing, toepassings. Die middelwaardestelling, L'Hospital se reël. Die bepaalde en onbepaalde integraal, evaluering van bepaalde integrale met behulp van anti-afgeleides, die substitusiereël.
Module-inhoud:
Proposisionele logika: waarheidstabelle, logiese ekwivalensie, implikasie, argumente. Wiskundige induksie en wel-ordeningsbeginsel. Inleiding tot versamelingsleer. Teltegnieke: elementêre waarskynlikheid, vermenigvuldigings- en optellingsreëls, permutasies en kombinasies, binomiaalstelling, insluit-uitsluitreël.
Module-inhoud:
Nie-lineêre vergelykings, numeriese integrasie, beginwaardeprobleme vir differensiaalvergelykings, stelsels lineêre vergelykings. Vir elementêre numeriese tegnieke word algoritmes afgelei en geprogrammeer. Foutskattings en konvergensieresultate word behandel.Module-inhoud:
*Studente sal nie vir meer as een van die volgende modules krediet ontvang vir hul graad nie: WTW 124, WTW 146, WTW 148 and WTW 164. Hierdie module dien as voorbereiding vir studente met Wiskunde as hoofvak (ingesluit alle student wat beplan om te skryf vir WTW 218, WTW 211 en WTW 220).
Die vektorruimte Rn, vektoralgebra met toepassings op lyne en vlakke, matriksalgebra, stelsels van lineêre vergelykings, determinante, Komplekse getalle en faktorisering van polinome. Integrasietegnieke en toepassings van integrasie. Die formele definisie van ’n limiet. Die hoofstelling van Calculus en toepassings. Vektorfunksies, poolvergelykings en kwadratiese krommes.
Module-inhoud:
Inleiding tot modellering van dinamiese prosesse met behulp van verskilvergelykings. Krommepassing. Inleiding tot lineêre programmering. Matlab programmering. Toepassings in die praktyk van onder andere finansies, ekonomie en ekologie.Module-inhoud:
*Studente sal nie vir meer as een van die volgende modules krediet ontvang vir hul graad nie: WTW 162 en WTW 264.
Inleiding tot die modellering van dinamiese prosesse met behulp van elementêre differensiaalvergelykings. Oplosmetodes vir eerste-orde differensiaalvergelykings en analise van die eienskappe van oplossings (grafieke). Toepassings in die praktyk.
Module-inhoud:
Inleiding tot ekonomie en beginsels van mikro-ekonomie
‘n Oorsig van ekonomie, die basiese teorie van vraag en aanbod, prys, inkome en kruiselastisiteit, verbruikersnut, die nutsfunksie en gevallestudies. Die teorie van die produsent oor die kort- en langtermyn, markstrukture, naamlik volmaakte mededinging, monopolie, oligopolie en monopolistiese mededinging, staatsfinansies, mikro- versus makro-ekonomie en ekonomiese statistiek.
Module-inhoud:
Nasionale inkome en beginsels van makro-ekonomie
Die aard en meganika van nasionale rekeninge, die Keynesiaanse makro-ekonomiese model, die geldmark, vraag na en aanbod van geld, geld- en kredietskepping en die rol van die monetêre owerhede. Die IS-LM makro-ekonomiese ewewigsmodel en monetêre en fiskale beleidstoepassings. Die totale vraag en aanbodmodelle en die debat tussen die klassieke, monetaristiese en Keynesiaanse skole. Die probleme van inflasie en werkloosheid. Makro-ekonomiese aspekte, naamlik makro-ekonomiese beleid, internasionale handel, die betalingsbalans en ekonomiese groei.
Module-inhoud:
*Slegs beskikbaar vir BSc (Wiskundige Statistiek, Konstruksiebestuur, Eiendomswese en Bourekenkunde) en BEng (Bedryfsingenieurswese) -studente. Doel en funksie van finansiële bestuur, grondliggende finansiële bestuursbegrippe. Rekeningkundige konsepte en die gebruik van die basiese rekeningkundige vergelyking om die finansiële toestand van ‘n onderneming te beskryf. Teboekstelling van rekeningkundige transaksies. Verband tussen kontant en rekeningkundige wins. Interne beheer en die bestuur van kontant. Debiteure en korttermynbeleggings. Voorraadwaardasiemetodes. Waardevermindering. Gebruik en verslagdoening oor skuldfinansiering en aandelekapitaal. Opstel en gebruik van finansiële state. Onderskeidende eienskappe van die verskillende ondernemingsvorme. Oorsig van die finansiële markte en die rol van finansiële instellings. Beskrywing van die risiko- en opbrengseienskappe van verskillende finansiële instrumente. Uitgifte van gewone aandele en skuldfinansieringsinstrumente.Module-inhoud:
*Slegs beskikbaar vir studente in BSc (Aktuariële en Finansiële Wiskunde), BSc (Wiskunde), BSc (Toegepaste Wiskunde), BSc (Wiskundige Statistiek), BSc Verlengde program – Wiskundige Wetenskappe en BCom (Statistiek) wat aan die gestelde voorvereistes voldoen
Grondbeginsels van finansiële bestuur. Maatskappy-eienaarskap. Belasting. Inleiding tot finansiële state. Struktuur van finansiële state. Depresiasie en reserwes. Voorbereiding van finansiële state. Groeps- finansiële state van 'n versekeringsmaatskappy. Vertolking van finansiële state. Beperking van finansiële state. Uitreiking van aandelekapitaal.
Module-inhoud:
*Slegs beskikbaar vir BSc (Wiskundige Statistiek) -studente.
Ontleding en vertolking van finansiële state. Begrotings en begrotingsbeheer. Belastingsbeginsels en die normale belastingaanspreeklikheid van individue. Tydwaarde van geld en die gebruik daarvan vir finansiële en beleggingsbesluite. Berekening van die koste van kapitaal en die finansiering van die onderneming met die oog op die handhawing van 'n optimale kapitaalstruktuur. Die investeringsbesluit en 'n studie van die verskillende besluitnemingskriteria vir kapitaalinvesteringsbesluite. Die dividend besluit en 'n oorsig van finansiële risikobestuur.
Module-inhoud:
Finansiële instrumente. Gebruik van finansiële instrumente. Finansiële instellings. Tydwaarde van geld. Komponentkoste van kapitaal. Geweegde gemiddelde koste van kapitaal. Kapitaalstruktuur en dividendbeleid. Kapitaalprojektaksasie. Evaluering van riskante investerings.
Minimum krediete: 132
Minimum krediete:
Kern = 84 krediete
Keuse = 60 krediete
Addisionele inligting:
Keusemodules: ’n Minimum van 54 keusekrediete op 100- tot 300-vlak kan gekies word uit enige WTW- en WST-modules. Die oorblywende keusekrediete op 100- tot 300-vlak kan gekies word uit enige ander modules uit die lys van modules van hierdie fakulteit.
Module-inhoud:
Hierdie is ‘n inleiding tot lineêre algebra oor Rn. Matrikse en lineêre vergelykings, lineêre kombinasies en die span van vektore, lineêre onafhanklikheid, deelruimtes, basis en dimensie, eiewaardes, eievektore, gelykvormigheid en diagonalisering van matrikse, lineêre transformasies.
Module-inhoud:
Calculus van meerveranderlike funksies, rigtingsafgeleides. Ekstreemwaardes en Lagrangevermenigvuldigers. Meervoudige integrale, pool-, silindriese en bolkoördinate.
Module-inhoud:
Eienskappe van reële getalle. Analise van rye en reekse reële getalle. Magreekse en konvergensiestellings. Die Bolzano-Weierstrass-stelling. Die tussenwaardestelling Analise van reëelwaardige funksies op 'n interval. Die Riemann-integraal: Bestaan en eienskappe van die integraal
Module-inhoud:
Abstrakte vektorruimtes, verandering van basis, martriksvoorstelling van lineêre transformasies, ortogonaliteit, diagonaliseerbaarheid van simmetriese matrikse, enkele toepassings.
Module-inhoud:
Vektore en meetkunde, Calculus van vektorfunksies met toepassings in differensiaal-meetkunde, kinematika en dinamika. Vektoranalise, insluitend vektorvelde, lynintegrale van skalaarvelde en vektorvelde, konserwatiewe vektorvelde, oppervlakke en oppervlakintegrale, die stellings van Green, Gauss en Stokes met toepassings.Module-inhoud:
Opstel en oplos van rekurrensierelasies. Ekwivalensie en parsiële orde relasies. Grafieke: paaie, siklusse, bome, isomorfisme. Grafiekalgoritmes: Kruskal, Prim, Fleury. Eindige staat outomata.Module-inhoud:
*Studente sal nie vir meer as een van die volgende modules krediet ontvang vir hul graad nie: WTW 264, WTW 286.
Teorie en oplosmetodes vir gewone differensiaalvergelykings en beginwaardeprobleme: skeibare en lineêre eerste-orde differensiaalvergelykings, lineêre vergelykings van hoër orde, stelsels lineêre vergelykings. Toepassing op wiskundige modelle. Toepassings van numeriese metodes op nielineêre stelsels.Kwalitatiewe analise van lineêre stelsels.
Module-inhoud:
Makro-ekonomie
Vanaf Wall en Bay Street tot Diagonal Street: 'n deeglike begrip van die meganisme en teorieë wat die funksionering van die ekonomie verduidelik, is onontbeerlik. Makro-ekonomiese insig in die reële mark, die geldmark, tweemarkewewig, monetarisme, groeiteorieë, konjuktuuranalise, inflasie, Keynesiaanse algemene ewewigsanalise, fiskale en monetêre beleidsaangeleenthede.
Module-inhoud:
Mikro-ekonomie
Mikro-ekonomiese insig in produsente- en verbruikersteorie, algemene mikro-ekonomiese ewewig, Pareto-optimaliteit en optimaliteit van die prysmeganisme, welvaartsekonomie, markvorme en die produksiestruktuur van Suid-Afrika.
Module-inhoud:
Makro-ekonomie
Toepassing van die beginsels geleer in EKN 214 op die wêreld waarin ons leef. Ons pas die teorie toe op internasionale marke en dinamiese makro-ekonomiese modelle, terwyl ons die student blootstel aan die makro-ekonomiese beleidsvraagstukke van die dag. Ons kyk ook na die jongste makro-ekonomiese navorsingsvraagstukke in die wêreld. Die kursus sluit onderwerpe in van die wiskundige en ekonometriese ontleding van makro-ekonomiese vraagstukke.
Module-inhoud:
Mikro-ekonomie
Vanaf algemene ewewig en ekonomiese welvaart, tot onsekerheid en assimetriese inligting. In hierdie module word die beginsels wat in EKN 224 geleer word toegepas op die wêreld om ons, deurdat ons die mikro-ekonomiese beginsels van die arbeids- en kapitaalmark bestudeer, asook die redes waarom die vryemarkstelsel soms misluk. Ons raak aan die owerheid se rol in hierdie markmislukkings. Die kursus sluit onderwerpe in van die wiskundige en ekonometriese ontleding van mikro-ekonomiese vraagstukke.
Module-inhoud:
Akkumulasiefunksies, rente, tydwaarde van geld, saamstellingsperiodes, kontant-vloeimodelle, waardevergelykings, jaargelde, uitbreiding na kontinue-tydsmeting, leningskedules, prestasiemeting, waardering van vaste rente-effekte.
Module-inhoud:
Beginsels van oorlewingsmodelle eenvoudige sterftewette, afleiding van gebeurlikheid-waarskynlikhede vanaf lewenstabelle, gebeurlikheidsbetalings lewensverwagting, elementêre oorlewingskontrakte,keur- en eindlewenstabelle, gevorderde lyfrentes, akkumulasie en verdiskontering, lewensversekering, netto en bruto premies, reserwes, statistiese oorwegings.
Module-inhoud:
Veralgemeende kontantvloeimodel. Tydwaarde van geld. Rentekoerse. Verdiskontering en akkumulasie. Saamgestelde rente funksies. Waardevergelykings. Projekevaluering. Beleggings. Eenvoudige saamgestelde renteprobleme. Die ''Geen Arbitrasie''- aanname en termynkontrakte. Termynstruktuur van rentekoerse. Stogastiese rentekoersmodelle.
Module-inhoud:
Databasisontwerp: die relasiemodel; gestruktureerde navraagtaal (SQL); entiteitsverwantskap modellering; normalisering; databasis ontwikkelingslewensiklus. Praktiese inleiding tot databasisontwerp. Databasisse: gevorderde entiteitsverwantskapmodellering en -normalisering; objek-geöriënteerde databasisse; databasis-ontwikkelingslewensiklus; gevorderde praktiese databasisontwerp.
Module-inhoud:
Versamelingsleer. Waarskynlikheidsmaatfunksies. Stogastiese veranderlikes. Verdelingsfunksies. Waarskynlikheidsmassafunksies. Digtheidsfunksies. Verwagte waardes. Momente. Momentvoortbringende funksies. Spesiale waarskynlikheidsverdelings: Bernoulli, binomiaal, hipergeometries, geometries, negatiefbinomiaal, Poisson, Poissonproses, diskreetuniform, uniform, gamma, eksponensiaal, Weibull, Pareto, normaal. Gesamentlike verdelings: Multinomiaal, uitgebreide hipergeometries, gesamentlike kontinue verdelings. Randverdelings. Onafhanklike stogastiese veranderlikes. Voorwaardelike verdelings. Kovariansie, korrelasie. Voorwaardelike verwagte waardes. Transformasie van stogastiese veranderlikes: Konvolusieformule. Ordestatistieke. Stogastiese Konvergensie: konvergensie in verdeling. Sentrale-limietstelling. Praktiese toepassings. Praktiese statistiese modellering en analise met gebruikmaking van statistiese rekenaarpakkette en die interpretasie van die berekenings.
Module-inhoud:
Stogastiese konvergensie: Asimptotiese normaalverdelings, konvergensie in waarskynlikheid. Statistieke en steekproefverdelings Chi-kwadraat-verdeling. Verdeling van die steekproefgemiddelde en steekproef variansie vir ewekansige steekproewe uit 'n normaalpopulasie. T-verdeling. F-verdeling. Beta-verdeling. Puntberaming: Metode van momente. Maksimumaanneemlikheidsberamers. Onsydige beremers. Gelykmatige minimum onsydige variansieberamers. Cramer-Rao ongelykheid. Doeltreffendheid. Konsekwentheid. Asimptotiese relatiewe doeltreffendheid. Bayes-beramers. Voldoende statistieke. Volledigheid. Die eksponensiaalklas. Vertrouensintervalle. Toetsing van hipoteses. Betroubaarheid en oorlewingsverdelings. Praktiese toepassings. Praktiese statistiese modellering en analise met behulp van statistiese rekenaarpakette en die interpretasie van die berekenings.Module-inhoud:
* Studente sal nie vir beide WTW 162 en WTW 264 of beide WTW 264 en WTW 286 krediet ontvang vir hul graad nie.
Teorie en oplosmetodes vir gewone differensiaalvergelykings en beginwaardeprobleme: skeibare en lineêre eerste-orde-vergelykings, lineêre vergelykings van hoër orde, stelsels lineêre vergelykings. Die Laplace-transform.
Minimum krediete: 144
Minimum krediete:
Kern = 90 krediete
Keuse = 54 krediete
Addisionele inligting:
Keusemodules: ’n Minimum van 54 keusekrediete op 100- tot 300-vlak kan gekies word uit enige WTW- en WST-modules. Die oorblywende keusekrediete op 100- tot 300-vlak kan gekies word uit enige ander modules uit die lys van modules van hierdie fakulteit.
Module-inhoud:
Topologie van eindigdimensionale ruimtes: Oop en geslote versamelings, kompaktheid, samehangendheid en volledigheid. Stellings van Bolzano-Weierstrass en Heine-Borel. Eienskappe van kontinue funksies en toepassings. Teorie van integrasie vir funksies van een reële veranderlike. Rye van funksies.Module-inhoud:
Matrikseksponensiaalfunksies: Homogene en nie-homogene lineêre stelsels, differensiaal-vergelykings. Kwalitatiewe analise van stelsels: fasebeelde, stabiliteit, linearisering, energiemetode en Liapunov se metode. Inleiding tot chaotiese stelsels. Toepassing op werklikheidsprobleme.
Module-inhoud:
Direkte metodes vir die numeriese oplossing van stelsels lineêre vergelykings, omspillingstrategieë. Iteratiewe metodes vir die oplos van stelsels lineêre vergelykings en eiewaardeprobleme. Iteratiewe metodes vir die oplos van stelsels nie-lineêre vergelykings. Inleiding tot optimering. Algoritmes vir die betrokke numeriese metodes word afgelei en geïmplementeer in rekenaarprogramme. Berekeningskompleksiteit word ondersoek. Foutafskattings en konvergensiestellings word bewys.
Module-inhoud:
Behoudwette en modellering. Fourieranalise. Hittevergelyking, golfvergelyking en Laplace se vergelyking. Oplosmetodes insluitend Fourier-reekse. Energie- en ander kwalitatiewe metodes.
Module-inhoud:
Kinematika van 'n kontinuum: Konfigurasies, ruimtelike en materiële beskrywing van beweging. Behoudwette. Analise van spanning, vervorming en deformasietempo. Lineêre samestellingsvergelykings. Toepassings: Vibrasie van balke, ewewigsprobleme in elastisiteit en spesiale gevalle van vloeistofbeweging.
Module-inhoud:
Staatsfinansies
Rol van die owerheid in die ekonomie. Welvaartsteorie en die optimaliteitsteorieë. Maniere waarop markmislukkings reggestel word. Owerheidsbestedingsteorieë, modelle en programme. Owerheidsinkomste. Modelle oor belasting, effek van belasting op die ekonomie. Beoordeling van belasting vanuit 'n optimaliteits- en effektiwiteitsoogpunt. Suid-Afrikaanse perspektief op owerheidsfinansies.
Module-inhoud:
Internasionale handel/finansiering Internasionale ekonomiese insig in die volgende: internasionale ekonomiese verhoudings en geskiedenis, internasionale handelsteorie, internasionale kapitaalbewegings, internasionale handelspolitiek, ekonomiese en doeane-unies en ander vorme van streeksamewerking en integrasie, internasionale monetêre verhoudings, buitelandse valutamarkte, wisselkoersaangeleenthede en die betalingsbalans asook die makro-ekonomiese aspekte van oop ekonomieë.Module-inhoud:
Ekonomiese analises Die identifikasie, insameling en interpretering van ekonomiese data; die nasionale rekeninge (inkome- en produksierekeninge, die nasionale finansiële rekening, die betalingsbalans en inset-uitsettabelle); ekonomiese groei; inflasie; werkskepping; werkloosheid, lone, produktiwiteit en inkomeverdeling; besigheidsiklusse; finansiële aanwysers; sosiale aanwysers; internasionale vergelykings; regressie-analise van verwantskappe tussen ekonomiese tydreekse; langtermyn toekomsstudies en scenarios; algehele beoordeling van die Suid-Afrikaanse ekonomie vanaf 1994.Module-inhoud:
Ekonomiese beleid en ontwikkeling: capita selecta Die kursus bied 'n inleiding tot ekonomiese groei en ook sommige onderwerpe en ontwikkelinge ekonomie. Eerstens word historiese bewyse ontleed en dan ook die kanonieke Solow-groei model en sommige van die empiriese toepassings daarvan (menslikekapitaal en konvergensie). Tweedens word die nuwe groeiteorie (die AK- en Romer modelle van endogene ekonomiese groei) gedek. Sommige van die ontwikkeling onderwerpe wat behandel word is tegnologie-oordrag, sosiale infrastruktuur en natuurlike hulpbronne.Module-inhoud:
Risiko en versekering. Belanghebbendes en die eskterne omgewing. Professionaliteit. Aktuarisse en die regulerende omgewing. Versekeringsprodukte en hul verskaffers. Prysbepaling van versekeringsprodukte. Wyer velde van die aktuariële praktyk. Herversekering. Nuwe verwikkelinge in die industrie.
Module-inhoud:
Beginsels van aktuariële modellering en stogastiese prosesse. Markov kettings en kontinue tyd Markov sprongprosesse. Simulasie van stogastiese prosesse. Oorlewingsmodelle en die lewenstabel. Beraming van die leeftydverdeling Fx(t). Die Cox regressiemodel. Die tweetoestand Markov model. Die algemene Markov model. Binomiale en Poisson modelle. Graduasie en statistiese toetse. Metodes van graduasie. Blootstelling aan risiko. Die evaluering van versekerings en annuïteite. Premies en reserwes.
Module-inhoud:
Meervariante statistiese verdelings: Momente van 'n verdeling, momentvoortbringende funksies, onafhanklikheid. Meervariante normaalverdeling: Voorwaardelike verdelings, parsiële en meervoudige korrelasies. Multinomiaal- en meervariante Poissonverdelings: Asimptotiese normaliteit en beraming van parameters. Verdeling van kwadratiese vorme in normaalveranderlikes. Meervariante normaalsteekproewe: Beraming van die gemiddelde vektor-en kovariansiematriks, beraming van korrelasiekoëffisiente, verdeling van die steekproefgemiddelde, steekproefkovariansiematriks en steekproefkorrelasiekoëffisient. Die lineêre model: Modelle van volle rang, kleinste-kwadrate beramers, toetse van hipoteses. Die veralgemeende linnere model: Eksponesiallfamilie, gemiddelde en variansi, skakelfunksies, deviansie en residu-analise, toetsstatistieke, log- lineere en logitmodelle. Praktiese toepassings: Praktiese statistiese modellering en analise deur gebruikmaking van statistiese rekenaarpakkette en interpretasie van die uitvoer.
Module-inhoud:
Definisie van 'n stogastiese proses. Stasionariteit. Kovariansiestasionêr. Markoveienskap. Stogastiese beweging. Brown-beweging. Markov-kettings. Chapman-Kolmogorov-vergelykings. Herhalende en nieherhalende toestande. Eerstebesoektye. Besettingstye. Markov-sprongproses. Poisson-proses. Geboorte- en sterfteprosesse. Struktuur van tydhomogene Markov-sprongprosesse. Toepassings in die versekeringswese. Gebruik van statistiese rekenaarprogramme vir praktiese statistiese modellering, simulasie en ontleding asook interpretasie van die uitvoer.Module-inhoud:
Stasionêre en niestasionêre eenveranderlike tydreekse. Eienskappe van outo-regressiewe bewegende gemiddelde (ARMA) en geïntegreerde outoregressiewe bewegende gemiddelde (ARIMA) prosesse. Identifisering, beraming en toetsing van 'n tydreeksmodel. Vooruitberaming. Meerveranderlike tydreekse. Gebruik van statistiese rekenaarprogramme vir praktiese statistiese modellering en ontleding.
Module-inhoud:
Beslissingsteorie. Verliesverdelings. Herversekering. Risikomodelle. Teorie van bankrotskap. Geloofwaardigheidsteorie. Metodes vir vooruitberaming van aantal eise en totale eisbedrag. Gebruik van statistiese rekenaarprogramme vir praktiese statistiese modellering en ontleding.
Module-inhoud:
Reekse van funksies, magreekse en Taylor-reekse. Komplekse funksies, Cauchy-Riemann-vergelykings, Cauchy se stelling en integraalformules. Laurent-reekse, residustelling en berekening van reële integrale met behulp van residue.
Module-inhoud:
Gemiddelde-variansie portfolioteorie. Mark ekwilibrium modelle soos die markpryswaarderingsmodel. Faktormodelle en arbitrage prysteorie. Beleggingsrisiko-meting. Doelmatige markhipotese. Stogastiese modelle van sekuriteitspryse.Module-inhoud:
Diskrete tyd finansiële modelle: ''Arbitrage'' en verskansing; die binomiaalmodel. Konitnue tyd finansiële modelle: Die Black-Scholes formule; die prys van opsies en ander afgeleide finansiële instrumente; rentekoersmodelle; numeriese metodes.
Module-inhoud:
Groepteorie: Definisie, voorbeelde, elementêre eienskappe, ondergroepe, permutasiegroepe, isomorfie, orde, sikliese groepe, homomorfismes, faktorgroepe. Ringteorie: Definisie, voorbeelde, elementêre eienskappe, ideale, homomorfismes, faktorringe, polinoomringe, faktorisering van polinome. Liggaamsuitbreidings, toepassings op liniaal-en-passerkonstruksies.Module-inhoud:
Aksiomatiese ontwikkeling van neutrale, Euklidiese en hiperboliese meetkunde. Gebruikmaking van modelle van meetkundes om aan te toon dat die parallel postulaat onafhanklik is van die ander Euklidiese postulate.Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App