Code | Faculty |
---|---|
02130015 | Faculty of Natural and Agricultural Sciences |
Credits | Duration | NQF level |
---|---|---|
Minimum duration of study: 4 years | Total credits: 136 | NQF level: 07 |
Candidates who do not comply with the minimum admission requirements of programmes in the Department of Physical Sciences, may be considered for admission to the BSc – Extended programme for the Physical Sciences. The BSc – Extended programme takes a year longer than the normal programmes to complete.
BSc -- Extended Programme -- Physical Sciences Minimum requirements | ||||||
Achievement level | ||||||
English Home Language or English First Additional Language | Mathematics | Physical Science | APS | |||
NSC/IEB | AS Level | NSC/IEB | AS Level | NSC/IEB | AS Level | |
4 | D | 4 | D | 4 | D | 28 |
The Dean may, on the recommendation of the programme manager, approve deviations with regard to the composition of the study programme.
Please note: Where elective modules are not specified, these may be chosen from any modules appearing in the list of modules.
It remains the student’s responsibility to acertain, prior to registration, whether they comply with the prerequisites of the modules they want to register for.
The prerequisites are listed in the alphabetical list of modules.
Academic promotion requirements
It is expected of students who register for the first year of the BSc (extended programme) to pass all the prescribed modules of the first year.
It is expected of students accepted into the BSc (extended programme) to finish a complete corresponding BSc first year within the two years of enrolment in the BSc (extended programme). Students who do not show progress during the first semester of the first year will be referred to the Admissions Committee of the Faculty.
Minimum credits: 88
Fundamental = 24
Core = 48
Elective = 16
Additional information:
Students register for either one of the following elective combinations
NB Students may register for an extended module only once.
Module content:
Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.
Module content:
Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.
Module content:
In this module students use different information and time management strategies, build academic vocabulary, revise basic grammar concepts and dictionary skills, examine learning styles, memory and note-taking techniques, practise academic reading skills and explore basic research and referencing techniques, learn how to use discourse markers and construct definitions, and are introduced to paragraph writing. The work is set in the context of the students’ field of study.
Module content:
In this module students learn how to interpret and use visual literacy conventions. Students write more advance paragraphs, and also learn how to structure academic writing, how to refine their use of discourse markers and referencing techniques and how to structure their own academic arguments. Students’ writing is expected to be rational, clear and concise. As a final assignment all aspects of the LST 133 and LST 143 modules are combined in a research assignment. In this project, students work in writing teams to produce a chapter on a career and to present an oral presentation of aspects of the chapter. The work is set in the context of the students’ field of study.
Module content:
Bonding and molecular geometry: VSEPR theory; bonding and organic compounds (structural formulas, classification and nomenclature); matter and its properties; mole concept; reaction stoichiometry; reactions in aqueous solutions: precipitation, acid base and redox. Practical laboratory exercises and assignments are based on the themes covered in the module theory component. The UN sustainable development goals #6, 7 & 12 are addressed in a practical on industrial pollution.
Module content:
Bonding and molecular geometry: VSEPR theory; bonding and organic compounds (structural formulas, classification and nomenclature); matter and its properties; mole concept; reaction stoichiometry; reactions in aqueous solutions: precipitation, acid base and redox.
Module content:
Heat: temperature and scales, work, energy and heat, calorimetry, specific heat, expansion, heat transfer. Measurements: SI-units, measuring error and uncertainty, (graphs), significant figures, mathematical modelling.One-dimensional kinematics. Geometrical optics: reflection, refraction, dispersion, mirrors, thin lenses.
Module content:
Vectors. Kinematics of a point: relative motion, projectile, circular motion. Dynamics: Newton’s laws, friction. Work: point masses, ideal gas law, springs, power. Energy: kinetic energy, potential energy, conservative forces, spring, conservation of mechanical energy. Hydrostatics and dynamics: density, pressure, Archimedes' law, continuity, Bernouli.
Module content:
Real numbers, elementary set notation, exponents and radicals. Algebraic expressions, fractional expressions, linear and quadratic equations, inequalities. Coordinate geometry: lines, circles. Functions: definition, notation, piecewise defined functions, domain and range, graphs, transformations of functions, symmetry, even and odd functions, combining functions, one-to-one functions and inverses, polynomial functions and zeros.
Sequences, summation notation, arithmetic, geometric sequences, infinite geometric series, annuities and instalments. Degrees and radians, unit circle, trigonometric functions, fundamental identities, trigonometric graphs, trigonometric identities, double-angle, half-angle formulae, trigonometric equations, applications.
This module is offered at the Mamelodi Campus to students from the BSc and BCom Extended programmes. At the Groenkloof Campus it is offered to BEd students.
Module content:
Functions: exponential and logarithmic functions, natural exponential and logarithmic functions, exponential and logarithmic laws, exponential and logarithmic equations, compound interest. Limits: concept of a limit, finding limits numerically and graphically, finding limits algebraically, limit laws without proofs, squeeze theorem without proof, one-sided limits, infinite limits, limits at infinity, vertical, horizontal and slant asymptotes, substitution rule, continuity, laws for continuity without proofs. Differentiation: average and instantaneous change, definition of derivative, differentiation rules without proofs, derivatives of polynomials, chain rule for differentiation, derivatives of trigonometric, exponential and logarithmic functions, applications of differentiation: extreme values, critical numbers, monotone functions, first derivative test, optimisation.
Module content:
Introduction to life science and life on earth, including the importance and relevance of the Sustainable Development Goals; the scientific method, principles of microscopy, introduction to the molecular structure and function of the cell. Basic chemistry of the cell. Structure and composition of prokaryotic and eukaryotic cells.
Module content:
Ultrastructure and function of cellular organelles, membranes and the cytoskeleton. General principles of energy, enzymes and cell metabolism including selected cellular.
Module content:
Descriptive statistics – Univariate:
The role of Statistics, various types of data. Sampling, probability and non-probability sampling techniques and the collection of data. Frequency, relative and cumulative distributions and graphical representations. Additional concepts relating to data processing: sigma notation, factorial notation. Descriptive measures of location,dispersion and symmetry. Exploratory data analysis.
Probability:
Introductory probability theory and applications. Set theory and probability laws. Introduction to random variables. Assigning probabilities, probability distributions, expected value and variance in general. Specific discrete probability distributions (Uniform, Binomial). Report writing and presentation. Identification, use, evaluation and interpretation of statistical computer packages and statistical techniques.
Module content:
Probability and inference:
Probability theory and theoretical distributions for continuous random variables (Uniform, Normal and t). Sampling distributions (means and proportions). Estimation theory and hypothesis testing of sampling averages and proportions (one- and two-sample cases).
Optimisation techniques with economic applications:
Applications of differentiation in statistic and economic related problems. Integration. Applications of integration in statistic and economic related problems. Systems of equations in equilibrium. The area under a curve and applications of definite integrals in Statistics and Economics. Report writing and presentation. Identification, use, evaluation and interpretation of statistical computer packages and statistical techniques.
Minimum credits: 24
Elective = According to BSc programme of choice
Additional information:
Students must register for the applicable third-semester modules(second year, first semester) and the second-semester, modules must be selected from the normal BSc programme of the student’s choice.
Equivalent modules:
Chemistry extended modules: CMY 133, CMY 143 and CMY 154: Equivalent to BSc module CMY 117
Molecular and cell biology extended modules: MLB 133, MLB 143 and MLB 153: Equivalent to BSc module MLB 111
Physics extended modules: PHY 133, PHY 143 and PHY 153: Equivalent to BSc module PHY 114
Mathematics extended modules: WTW 133, WTW 143 and WTW 153: Equivalent to BSc module WTW 114
Mathematical Statistics extended modules: WST 133, WST 143 and WST 153: Equivalent to BSc module WST 111
Module content:
Principles of reactivity: energy and chemical reactions. Physical behaviour of gasses, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to Chemical kinetics. Introduction to chemical equilibrium. Introduction to organic chemistry: hybridisation, isomers (structural, geometrical and conformational), additions reactions and reaction mechanisms.
Module content:
System of particles: centre of mass, Newton's laws. Rotation: torque, conservation of momentum, impulse and collision, conservation of angular momentum, equilibrium, centre of gravity. Oscillations. Waves: sound, intensity, superposition, interference, standing waves, resonance, beats, Doppler effect. Physical optics: Young-interference, coherence, thin layers, diffraction, gratings, polarisation.
Module content:
Differential calculus of a single variable with proofs and applications. The mean value theorem, the rule of L'Hospital. Upper and lower sums, definite and indefinite integrals, the Fundamental theorem of Calculus, the mean value theorem for integrals, integration techniques, with some proofs.
Module content:
Simple statistical analysis: Data collection and analysis: Samples, tabulation, graphical representation, describing location, spread and skewness. Introductory probability and distribution theory. Sampling distributions and the central limit theorem. Statistical inference: Basic principles, estimation and testing in the one- and two-sample cases (parametric and non-parametric). Introduction to experimental design. One- and twoway designs, randomised blocks. Multiple statistical analysis: Bivariate data sets: Curve fitting (linear and non-linear), growth curves. Statistical inference in the simple regression case. Categorical analysis: Testing goodness of fit and contingency tables. Multiple regression and correlation: Fitting and testing of models. Residual analysis. Computer literacy: Use of computer packages in data analysis and report writing.
Module content:
Theory: General physical-analytical chemistry: Chemical equilibrium, acids and bases, buffers, solubility equilibrium, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and aminoacids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.
Module content:
Introducing the basic concepts and interrelationships required to understand the complexity of natural environmental problems, covering an introduction to environmental science and biogeography; including a first introduction to SDGs and Aichi targets.
Module content:
This module begins by fostering an understanding of human geography. Then follows with the political ordering of space; cultural diversity as well as ethnic geography globally and locally; population geography of the world and South Africa: and four economic levels of development. The purpose is to place South Africa in a world setting and to understand the future of the country.
Module content:
Investigating southern African landscapes and placing them in a theoretical and global context. The geomorphological evolution of southern Africa. Introduction to the concepts of Geomorphology and its relationships with other physical sciences (e.g. meteorology, climatology, geology, hydrology and biology). The processes and controls of landform and landscape evolution. Tutorial exercises cover basic techniques of geomorphological analysis, and topical issues in Geomorphology.
Module content:
Solar system; structure of solid matter; minerals and rocks; introduction to symmetry and crystallography; important minerals and solid solutions; rock cycle; classification of rocks. External geological processes (gravity, water, wind, sea, ice) and their products (including geomorphology). Internal structure of the earth. The dynamic earth – volcanism, earthquakes, mountain building – the theory of plate tectonics. Geological processes (magmatism, metamorphism, sedimentology, structural geology) in a plate tectonic context. Geological maps and mineral and rock specimens. Interaction between man and the environment, and nature of anthropogenic climate change.
Module content:
This module will give an overview of earth history, from the Archaean to the present. Important concepts such as the principles of stratigraphy and stratigraphic nomenclature, geological dating and international and South African time scales will be introduced. A brief introduction to the principles of palaeontology will be given, along with short descriptions of major fossil groups, fossil forms, ecology and geological meaning. In the South African context, the major stratigraphic units, intrusions and tectonic/metamorphic events will be detailed, along with related rock types, fossil contents, genesis and economic commodities. Anthropogenic effects on the environment and their mitigation. Practical work will focus on the interpretation of geological maps and profiles.
Module content:
History, present and future of cartography. Introductory geodesy: shape of the earth, graticule and grids, datum definition, elementary map projection theory, spherical calculations. Representation of geographical data on maps: Cartographic design, cartographic abstraction, levels of measurement and visual variables. Semiotics for cartography: signs, sign systems, map semantics and syntactics, explicit and implicit meaning of maps (map pragmatics). Critique maps of indicators to measure United Nations Sustainable Development Goals in South Africa.
Module content:
Introduction to information systems, information systems in organisations, hardware: input, processing, output, software: systems and application software, organisation of data and information, telecommunications and networks, the Internet and Intranet. Transaction processing systems, management information systems, decision support systems, information systems in business and society, systems analysis, systems design, implementation, maintenance and revision.
Module content:
General systems theory, creative problem solving, soft systems methodology. The systems analyst, systems development building blocks, systems development, systems analysis methods, process modelling.
Module content:
Cell growth and cell division, Mendelian and human genetics, principles of molecular genetics, principles of recombinant DNA technology and its application.
Module content:
Simple harmonic motion and pendulums. Coulomb’s law. Electric field: dipoles, Gauss’ law.Electric potential. Capacitance. Electric currents: resistance, resistivity, Ohm’s law, energy, power, emf, RC-circuits. Magnetic Field: Hall-effect, Bio-Savart. Faraday’s and Lenz’s laws. Oscillations: LR-circuits. Alternating current: RLC-circuits, power, transformers. Introductory concepts to modern physics. Nuclear physics: Radioactivity.
Module content:
Students from all faculties are welcome to join us in our exploration of the universe from an earth-bound perspective. We reflect on the whole universe from the sub microscopic to the vast macroscopic and mankind’s modest position therein. To what degree is our happiness determined by stars? Echoes from ancient firmaments - the astronomy of old civilisations. The universe is born with a bang. Stars, milky ways and planets are formed. Life is breathed into the landscape on earth, but is there life elsewhere? The architecture of the universe – distance measurements, structure of our solar system and systems of stars. How does it look like on neighbouring planets? Comets and meteorites. Life cycles of stars. Spectacular exploding stars! Exotica like pulsars and black holes.
Module content:
Equivalent force systems, resultants. Newton's laws, units. Forces acting on particles. Rigid bodies: principle of transmissibility, resultant of parallel forces. Vector moments and scalar moments. Relationship between scalar- and vector moments. Couples. Equivalent force systems on rigid bodies. Resultants of forces on rigid bodies. Equilibrium in two and three dimensions. Hooke's law. Trusses and frameworks. Centroids and second moments of area. Beams: distributed forces, shear force, bending moment, method of sections, relationship between load, shear force and bending moment.
Module content:
Non-linear equations, numerical integration, initial value problems for differential equations, systems of linear equations. Algorithms for elementary numerical techniques are derived and implemented in computer programmes. Error estimates and convergence results are treated.
Module content:
*Students will not be credited for more than one of the following modules for their degree:
WTW 124, WTW 146, WTW 148 and WTW 164. This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218, WTW 211 and WTW 220).
The vector space Rn, vector algebra with applications to lines and planes, matrix algebra, systems of linear equations, determinants. Complex numbers and factorisation of polynomials. Integration techniques and applications of integration. The formal definition of a limit. The fundamental theorem of Calculus and applications. Vector functions and quadratic curves.
Module content:
The module serves as an introduction to computer programming as used in science. Modelling of dynamical processes using difference equations; curve fitting and linear programming are studied. Applications are drawn from real-life situations in, among others, finance, economics and ecology.
Module content:
*Students will not be credited for more than one of the following modules for their degree: WTW 162 and WTW 264.
Introduction to the modelling of dynamical processes using elementary differential equations. Solution methods for first order differential equations and analysis of properties of solutions (graphs). Applications to real life situations.
Module content:
*This module is designed for first-year engineering students. Students will not be credited for more than one of the following modules for their degree: WTW 146, WTW 148 and WTW 124,
Vector algebra with applications to lines and planes in space, matrix algebra, systems of linear equations, determinants, complex numbers, factorisation of polynomials and conic sections. Integration techniques, improper integrals. The definite integral, fundamental theorem of Calculus. Applications of integration. Elementary power series and Taylor’s theorem. Vector functions, space curves and arc lengths. Quadratic surfaces and multivariable functions.
Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App