Code | Faculty |
---|---|
02133173 | Faculty of Natural and Agricultural Sciences |
Credits | Duration | NQF level |
---|---|---|
Minimum duration of study: 3 years | Total credits: 428 | NQF level: 07 |
Minimum requirements | ||||||
Achievement level | ||||||
English Home Language or English First Additional Language | Mathematics | Physical Science | APS | |||
NSC/IEB | AS Level | NSC/IEB | AS Level | NSC/IEB | AS Level | |
5 | C | 5 | C | 5 | C | 34 |
* Cambridge A level candidates who obtained at least a D in the required subjects, will be considered for admission. International Baccalaureate (IB) HL candidates who obtained at least a 4 in the required subjects, will be considered for admission.
Candidates who do not comply with the minimum admission requirements for BSc (Chemistry), may be considered for admission to the BSc – Extended programme – Physical Sciences. This programme takes a year longer than the normal programmes to complete.
BSc – Extended Programme – Physical Sciences Minimum requirements | ||||||
Achievement level | ||||||
English Home Language or English First Additional Language | Mathematics | Physical Science | APS | |||
NSC/IEB | AS Level | NSC/IEB | AS Level | NSC/IEB | AS Level | |
4 | D | 4 | D | 4 | D | 28 |
A student must pass all the minimum prescribed and elective module credits as set out at the end of each year within a programme as well as the total required credits to comply with the particular degree programme. Please refer to the curricula of the respective programmes. At least 144 credits must be obtained at 300-/400-level, or otherwise as indicated by curriculum. The minimum module credits needed to comply with degree requirements is set out at the end of each study programme. Subject to the programmes as indicated a maximum of 150 credits will be recognised at 100-level. A student may, in consultation with the relevant head of department and subject to the permission by the Dean, select or replace prescribed module credits not indicated in BSc three-year study programmes to the equivalent of a maximum of 36 module credits.
It is important that the total number of prescribed module credits is completed during the course of the study programme. The Dean may, on the recommendation of the relevant head of department, approve deviations in this regard. Subject to the programmes as indicated in the respective curricula, a student may not register for more than 75 module credits per semester at first-year level subject to permission by the Dean. A student may be permitted to register for up to 80 module credits in a the first semester during the first year provided that he or she obtained a final mark of no less than 70% for grade 12 Mathematics and achieved an APS of 34 or more in the NSC.
Students who are already in possession of a bachelor’s degree, will not receive credit for modules of which the content overlap with modules from the degree that was already conferred. Credits will not be considered for more than half the credits passed previously for an uncompleted degree. No credits at the final-year or 300- and 400-level will be granted.
The Dean may, on the recommendation of the programme manager, approve deviations with regard to the composition of the study programme.
Please note: Where elective modules are not specified, these may be chosen from any modules appearing in the list of modules.
It remains the student’s responsibility to acertain, prior to registration, whether they comply with the prerequisites of the modules they want to register for.
The prerequisites are listed in the Alphabetical list of modules.
A student will be promoted to the following year of study if he or she passed 100 credits of the prescribed credits for a year of study, unless the Dean on the recommendation of the relevant head of department decides otherwise. A student who does not comply with the requirements for promotion to the following year of study, retains the credit for the modules already passed and may be admitted by the Dean, on recommendation of the relevant head of department, to modules of the following year of study to a maximum of 48 credits, provided that it will fit in with both the lecture and examination timetable.
General promotion requirements in the faculty
All students whose academic progress is not acceptable can be suspended from further studies.
Minimum credits: 140
Fundamental = 12
Core = 96
Electives = 32
Elective Modules (Credits = 32)
Students must select elective modules with a total number of at least 32 credits.
Depending on a student’s second major and other interests, the following combinations of modules are recommended (deviations allowed with permission from the head of department):
Module content:
Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology. Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.
Module content:
Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.
Module content:
Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.
Module content:
The module aims to equip students with the ability to cope with the reading and writing demands of scientific disciplines.
Module content:
General introduction to inorganic, analytical and physical chemistry. Atomic structure and periodicity. Molecular structure and chemical bonding using the VSEOR model. Nomenclature of inorganic ions and compounds. Classification of reactions: precipitation, acid-base, redox reactions and gas-forming reactions. Mole concept and stoichiometric calculations concerning chemical formulas and chemical reactions. Principles of reactivity: energy and chemical reactions. Physical behaviour gases, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to chemical kinetics.
Module content:
Theory: General physical-analytical chemistry: Chemical equilibrium, acids and bases, buffers, solubility equilibrium, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and aminoacids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.
Module content:
SI-units. Significant figures. Waves: intensity, superposition, interference, standing waves, resonance, beats, Doppler. Geometrical optics: Reflection, refraction, mirrors, thin lenses, instruments. Physical optics: Young-interference, coherence, diffraction, polarisation. Hydrostatics and dynamics: density, pressure, Archimedes’ principle, continuity, Bernoulli. Heat: temperature, specific heat, expansion, heat transfer. Vectors. Kinematics of a point: Relative, projectile, and circular motion. Dynamics: Newton’s laws, friction. Work: point masses, gasses (ideal gas law), gravitation, spring, power. Kinetic energy: Conservative forces, gravitation, spring. Conservation of energy. Conservation of momentum. Impulse and collisions. System of particles: Centre of mass, Newton’s laws. Rotation: torque, conservation of angular momentum, equilibrium, centre of gravity.
Module content:
Simple harmonic motion and pendulums. Coulomb’s law. Electric field: dipoles, Gauss’ law.Electric potential. Capacitance. Electric currents: resistance, resistivity, Ohm’s law, energy, power, emf, RC-circuits. Magnetic Field: Hall-effect, Bio-Savart. Faraday’s and Lenz’s laws. Oscillations: LR-circuits. Alternating current: RLC-circuits, power, transformers. Introductory concepts to modern physics. Nuclear physics: Radioactivity.
Module content:
*This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218 and WTW 220). Students will not be credited for more than one of the following modules for their degree: WTW 114, WTW 158, WTW 134, WTW 165.
Functions, limits and continuity. Differential calculus of single variable functions, rate of change, graph sketching, applications. The mean value theorem, the rule of L'Hospital. Definite and indefinite integrals, evaluating definite integrals using anti-derivatives, the substitution rule.
Module content:
*Students will not be credited for more than one of the following modules for their degree:
WTW 124, WTW 146, WTW 148 and WTW 164. This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218, WTW 211 and WTW 220).
The vector space Rn, vector algebra with applications to lines and planes, matrix algebra, systems of linear equations, determinants. Complex numbers and factorisation of polynomials. Integration techniques and applications of integration. The formal definition of a limit. The fundamental theorem of Calculus and applications. Vector functions and quadratic curves.
Module content:
Simple statistical analysis: Data collection and analysis: Samples, tabulation, graphical representation, describing location, spread and skewness. Introductory probability and distribution theory. Sampling distributions and the central limit theorem. Statistical inference: Basic principles, estimation and testing in the one- and two-sample cases (parametric and non-parametric). Introduction to experimental design. One- and twoway designs, randomised blocks. Multiple statistical analysis: Bivariate data sets: Curve fitting (linear and non-linear), growth curves. Statistical inference in the simple regression case. Categorical analysis: Testing goodness of fit and contingency tables. Multiple regression and correlation: Fitting and testing of models. Residual analysis. Computer literacy: Use of computer packages in data analysis and report writing.
Module content:
Basic plant structure and function; introductory plant taxonomy and plant systematics; principles of plant molecular biology and biotechnology; adaptation of plants to stress; medicinal compounds from plants; basic principles of plant ecology and their application in natural resource management.
Module content:
Introducing the basic concepts and interrelationships required to understand the complexity of natural environmental problems, covering an introduction to environmental science and biogeography; including a first introduction to SDGs and Aichi targets.
Module content:
This module begins by fostering an understanding of human geography. Then follows with the political ordering of space; cultural diversity as well as ethnic geography globally and locally; population geography of the world and South Africa: and four economic levels of development. The purpose is to place South Africa in a world setting and to understand the future of the country.
Module content:
Investigating southern African landscapes and placing them in a theoretical and global context. The geomorphological evolution of southern Africa. Introduction to the concepts of Geomorphology and its relationships with other physical sciences (e.g. meteorology, climatology, geology, hydrology and biology). The processes and controls of landform and landscape evolution. Tutorial exercises cover basic techniques of geomorphological analysis, and topical issues in Geomorphology.
Module content:
History, present and future of cartography. Introductory geodesy: shape of the earth, graticule and grids, datum definition, elementary map projection theory, spherical calculations. Representation of geographical data on maps: Cartographic design, cartographic abstraction, levels of measurement and visual variables. Semiotics for cartography: signs, sign systems, map semantics and syntactics, explicit and implicit meaning of maps (map pragmatics). Critique maps of indicators to measure United Nations Sustainable Development Goals in South Africa.
Module content:
Chromosomes and cell division. Principles of Mendelian inheritance: locus and alleles, dominance interactions, extensions and modifications of basic principles.. Probability studies. Sex determination and sex linked traits. Pedigree analysis. Genetic linkage and chromosome mapping. Chromosome variation.
Module content:
The module will introduce the student to the field of Microbiology. Basic Microbiological aspects that will be covered include introduction into the diversity of the microbial world (bacteria, archaea, eukaryotic microorganisms and viruses), basic principles of cell structure and function, microbial nutrition and microbial growth and growth control. Applications in Microbiology will be illustrated by specific examples i.e. bioremediation, animal-microbial symbiosis, plant-microbial symbiosis and the use of microorganisms in industrial microbiology. Wastewater treatment, microbial diseases and food will be introduced using specific examples.
Module content:
Introduction to the molecular structure and function of the cell. Basic chemistry of the cell. Structure and composition of prokaryotic and eukaryotic cells. Ultrastructure and function of cellular organelles, membranes and the cytoskeleton. General principles of energy, enzymes and cell metabolism. Selected processes, e.g. glycolysis, respiration and/or photosynthesis. Introduction to molecular genetics: DNA structure and replication, transcription, translation. Cell growth and cell division.
Module content:
*Students are not allowed to earn credits for WKD 155 and WKD 164
Introduction to weather and climate. Climate of South Africa. Urban and rural climate. Meteorological instruments. Motion of the earth. Atmospheric mass and pressure. Energy and heat budget. Moisture in the atmosphere. Cloud development. Climate change. ENSO. Electromagnetic spectrum and remote sensing in meteorology. Synoptic weather systems of South Africa.
Module content:
Propositional logic: truth tables, logical equivalence, implication, arguments. Mathematical induction and well-ordering principle. Introduction to set theory. Counting techniques: elementary probability, multiplication and addition rules, permutations and combinations, binomial theorem, inclusion-exclusion rule.
Module content:
*Students will not be credited for more than one of the following modules for their degree: WTW 162 and WTW 264.
Introduction to the modelling of dynamical processes using elementary differential equations. Solution methods for first order differential equations and analysis of properties of solutions (graphs). Applications to real life situations.
Module content:
Animal classification, phylogeny organisation and terminology. Evolution of the various animal phyla, morphological characteristics and life cycles of parasitic and non-parasitic animals. Structure and function of reproductive,
respiratory, excretory, circulatory and digestive systems in various animal phyla. In-class discussion will address the sustainable development goals #3, 12, 13, 14 and 15 (Good Health and Well-being. Responsible Consumption and Production, Climate Action, Life Below Water, Life on Land).
Minimum credits: 144
Core = 48
Elective = 96
Additional information:
Elective Modules (Credits = 96)
Students who do not intend to continue with Mathematics on third year level may replace WTW 220 with WTW 224
Students must select elective modules with a total number of at least 96 credits.
Depending on a student’s second major and other interests, the following modules are recommended (deviations allowed with permission from the head of department):
Module content:
Theory: Classical chemical thermodynamics, gases, first and second law and applications, physical changes of pure materials and simple compounds. Phase rule: Chemical reactions, chemical kinetics, rates of reactions.
Module content:
Statistical evaluation of data in line with ethical practice, gravimetric analysis, aqueous solution chemistry, chemical equilibrium, precipitation-, neutralisation- and complex formation titrations, redox titrations, potentiometric methods, introduction to electrochemistry. Examples throughout the course demonstrate the relevance of the theory to meeting the sustainable development goals of clean water and clean, affordable energy.
Module content:
Resonance, conjugation and aromaticity. Acidity and basicity. Introduction to 13C NMR spectroscopy. Electrophilic addition: alkenes. Nucleophilic substitution, elimination, addition: alkyl halides, alcohols, ethers, epoxides, carbonyl compounds: ketones, aldehydes, carboxylic acids and their derivatives Training in an ethical approach to safety that protects self, others and the environment is integral to the practical component of the course.
Module content:
Atomic structure, structure of solids (ionic model). Coordination chemistry of transition metals: Oxidation states of transition metals, ligands, stereochemistry, crystal field theory, consequences of d-orbital splitting, chemistry of the main group elements, electrochemical properties of transition metals in aqueous solution, industrial applications of transition metals. Fundamentals of spectroscopy and introduction to IR spectroscopy. During practical training students learn to acquire and report data ethically. Practical training also deals with the misuse of chemicals and appropriate waste disposal to protect the environment and meet the UN sustainable development goals.
Module content:
Structural and ionic properties of amino acids. Peptides, the peptide bond, primary, secondary, tertiary and quaternary structure of proteins. Interactions that stabilise protein structure, denaturation and renaturation of proteins. Introduction to methods for the purification of proteins, amino acid composition, and sequence determinations. Enzyme kinetics and enzyme inhibition. Allosteric enzymes, regulation of enzyme activity, active centres and mechanisms of enzyme catalysis. Examples of industrial applications of enzymes and in clinical pathology as biomarkers of diseases. Introduction to practical laboratory techniques and Good Laboratory Practice. Techniques for the quantitative and qualitative analysis of biological molecules, enzyme activity measurements . Processing and presentation of scientific data.
Module content:
Carbohydrate structure and function. Blood glucose measurement in the diagnosis and treatment of diabetes. Bioenergetics and biochemical reaction types. Glycolysis, gluconeogenesis, glycogen metabolism, pentose phosphate pathway, citric acid cycle and electron transport. Total ATP yield from the complete oxidation of glucose. A comparison of cellular respiration and photosynthesis. Practical techniques for the study and analysis of metabolic pathways and enzymes. PO ratio of mitochondria, electrophoresis, extraction, solubility and gel permeation techniques. Scientific method and design.
Module content:
Biochemistry of lipids, membrane structure, anabolism and catabolism of lipids. Total ATP yield from the complete catabolism of lipids. Electron transport chain and energy production through oxidative phosphorylation. Nitrogen metabolism, amino acid biosynthesis and catabolism. Biosynthesis of neurotransmitters, pigments, hormones and nucleotides from amino acids. Catabolism of purines and pyrimidines. Therapeutic agents directed against nucleotide metabolism. Examples of inborn errors of metabolism of nitrogen containing compounds. The urea cycle, nitrogen excretion. Practical training in scientific reading skills: evaluation of a scientific report. Techniques for separation analysis and visualisation of biological molecules. Hypothesis design and testing, method design and scientific controls.
Module content:
Biochemistry of nutrition and toxicology. Proximate analysis of nutrients. Review of energy requirements and expenditure, starvation, marasmus and kwashiorkor. Respiratory quotient. Requirements and function of water, vitamins and minerals. Interpretation and modification of RDA values for specific diets, eg growth, exercise, pregnancy and lactation, aging and starvation. Interactions between nutrients. Cholesterol, polyunsaturated, essential fatty acids and dietary anti-oxidants. Oxidation of fats. Biochemical mechanisms of water- and fat-soluble vitamins and assessment of vitamin status. Mineral requirements, biochemical mechanisms, imbalances and diarrhoea. Biochemistry of xenobiotics: absorption, distribution, metabolism and excretion (ADME); detoxification reactions: oxidation/reduction (Phase I), conjugations (Phase II), export from cells (Phase III); factors affecting metabolism and disposition. Examples of genetic abnormalities, phenotypes and frequencies. Examples of toxins: biochemical mechanisms of common toxins and their antidotes. Natural toxins from fungi, plants and animals: goitrogens, cyanogens, cholineesterase inhibitors, ergotoxin, aflatoxins Practical training in scientific writing skills: evaluating scientific findings. Introduction to practical techniques in nutrition and toxicology. Experimental design and calculations in experiments: determining nutritional value of metabolites and studying the ADME of toxins.
Module content:
Origin and affinity of South African flora and vegetation types; principles of plant geography; plant diversity in southern Africa; characteristics, environments and vegetation of South African biomes and associated key ecological processes; centra of plant endemism; rare and threatened plant species; biodiversity conservation and ecosystem management; invasion biology; conservation status of South African vegetation types.
Module content:
Nitrogen metabolism in plants; nitrogen fixation in Agriculture; plant secondary metabolism and natural products; photosynthesis and carbohydrate metabolism in plants; applications in solar energy; plant growth regulation and the Green Revolution; plant responses to the environment; developing abiotic stress tolerant and disease resistant plants. Practicals: Basic laboratory skills in plant physiology; techniques used to investigate nitrogen metabolism, carbohydrate metabolism, pigment analysis, water transport in plant tissue and response of plants to hormone treatments.
Module content:
Introduces basic concepts and interrelationships required to understand our atmosphere, with a strong focus on an introduction to weather and climate. A key component of the course is an introduction to climate change, including the science of climate change, introducing climate change projections, and climate change impacts. A key focus of the second part of the course will be climate change implications for the attainment of SDGs and Aichi targets on the African continent, under a range of plausible scenarios.
Module content:
Orientation in physiology, homeostasis, cells and tissue, muscle and neurophysiology, cerebrospinal fluid and the special senses.
Practical work: Practical exercises to complement the theory.
Module content:
Body fluids; haematology; cardiovascular physiology and the lymphatic system. Practical work: Practical exercises to complement the theory.
Module content:
Structure, gas exchange and non-respiratory functions of the lungs; structure, excretory and non-urinary functions of the kidneys, acid-base balance, as well as the skin and body temperature control.
Practical work: Practical exercises to complement the theory.
Module content:
Nutrition, digestion and metabolism; hormonal control of the body functions and the reproductive systems. Practical work: Practical exercises to complement the theory.
Module content:
The module introduces students to urban settlement patterns, processes and structures. Using a series of case studies, it aims to develop an understanding of the challenges facing urban areas both in South Africa and globally.
Module content:
Physical processes that influence the earth’s surface and management. Specific processes and their interaction in themes such as weathering; soil erosion; slope, mass movement and periglacial processes. Practical laboratory exercises and assignments are based on the themes covered in the module theory component.
Module content:
Introduction to Geographic Information Systems (GIS), theoretical concepts and applications of GIS. The focus will be on the GIS process of data input, data analysis, data output and associated technologies. This module provides the foundations for more advanced GIS and Geoinformatics topics. Practical assessments and a mini-project make use of South African and African examples and foster learning and application of concepts aligned to the UN Sustainable Development Goals.
Module content:
The nature of geographical data and measurement.Application of statistics in the geographical domain. Probability, probability distributions and densities, expected values and variances, Central Limit theorem. Sampling techniques. Exploratory data analysis, descriptive statistics, statistical estimation, hypothesis testing, correlation analysis and regression analysis. Examples used throughout the course are drawn from South African and African case studies and taught within the framework of the UN Sustainable Development Goals.
Module content:
Origin and development of soil, weathering and soil formation processes. Profile differentiation and morphology. Physical characteristics: texture, structure, soil water, atmosphere and temperature. Chemical characteristics: clay minerals, ion exchange, pH, buffer action, soil acidification and salinisation of soil. Soil fertility and fertilisation. Soil classification. Practical work: Laboratory evaluation of simple soil characteristics. Field practicals on soil formation in the Pretoria area.
Module content:
Introduction to sedimentology; grain studies; composition and textures of sedimentary rocks; flow dynamics and behaviour of sediment particles in transport systems; description and genesis of sedimentary structures; diagenesis; depositional environments and their deposits, modern and ancient; chemical sedimentary rocks; economic sedimentology; field data acquisition from sedimentary rocks and writing of reports; sieve analysis; Markov analysis; analysis of palaeocurrent trends; interpretation of sedimentary profiles.
Module content:
Fundamental concepts in mineralogy, and practical applications of mineralogy, including: the basics of crystal structure; the crystallographic groups; the rules of atomic substitution; phase transitions and phase diagrams; the structure and uses of olivine, pyroxene, feldspar, amphibole, mica, aluminosilicates, garnet, cordierite, and more uncommon mineral groups such as oxides, sulphides and carbonates; the calculation of mineral formulae from chemical analyses using various methods. Practical sessions: the basics of optical mineralogy and the use of transmitted light microscopy for thin section examination of minerals and rocks; the practicals will develop mineral identification skills for the minerals covered in the lectures, and cover basic textural identification.
Module content:
The chemical nature of DNA. The processes of DNA replication, transcription, RNA processing, translation. Control of gene expression in prokaryotes and eukaryotes. Recombinant DNA technology and its applications in gene analysis and manipulation.
Module content:
Chromosome structure and transposable elements. Mutation and DNA repair. Genomics and proteomics. Organelle genomes. Introduction to genetic analysis of populations: allele and genotypic frequencies, Hardy Weinberg Law, its extensions and implications for different mating systems. Introduction to quantitative and evolutionary genetics.
Module content:
Growth, replication and survival of bacteria, Energy sources, harvesting from light versus oxidation, regulation of catabolic pathways, chemotaxis. Nitrogen metabolism, iron-scavenging. Alternative electron acceptors: denitrification, sulphate reduction, methanogenesis. Bacterial evolution, systematic and genomics. Biodiversity; bacteria occurring in the natural environment (soil, water and air), associated with humans, animals, plants, and those of importance in foods and in the water industry.
Module content:
Organisation and molecular architecture of fungal thalli, chemistry of the fungal cell. Chemical and physiological requirements for growth and nutrient acquisition. Mating and meiosis; spore development; spore dormancy, dispersal and germination. Fungi as saprobes in soil, air, plant, aquatic and marine ecosystems; role of fungi as decomposers and in the deterioration of materials; fungi as predators and parasites; mycoses, mycetisms and mycotoxicoses; fungi as symbionts of plants, insects and animals. Applications of fungi in biotechnology.
Module content:
This is an introduction to linear algebra on Rn. Matrices and linear equations, linear combinations and spans, linear independence, subspaces, basis and dimension, eigenvalues, eigenvectors, similarity and diagonalisation of matrices, linear transformations.
Module content:
Calculus of multivariable functions, directional derivatives. Extrema and Lagrange multipliers. Multiple integrals, polar, cylindrical and spherical coordinates.
Module content:
*This module is recommended as an elective only for students who intend to enrol for WTW 310 and/or WTW 320. Students will not be credited for more than one of the following modules for their degree: WTW 220 and WTW 224.
Properties of real numbers. Analysis of sequences and series of real numbers. Power series and theorems of convergence. The Bolzano-Weierstrass theorem. The intermediate value theorem and analysis of real-valued functions on an interval. The Riemann integral: Existence and properties of the interval.
Module content:
Abstract vector spaces, change of basis, matrix representation of linear transformations, orthogonality, diagonalisability of symmetric matrices, some applications.
Module content:
*This module does not lead to admission to WTW 310 or WTW 320. Students will not be credited for more than one of the following modules for their degree: WTW 220 and WTW 224.
Sequences of real numbers: convergence and monotone sequences. Series of real numbers: convergence, integral test, comparison tests, alternating series, absolute convergence, ratio and root tests. Power series: representation of functions as power series, Taylor and Maclaurin series. Application to series solutions of differential equations.
Module content:
Vectors and geometry. Calculus of vector functions with applications to differential geometry, kinematics and dynamics. Vector analysis, including vector fields, line integrals of scalar and vector fields, conservative vector fields, surfaces and surface integrals, the Theorems of Green, Gauss and Stokes with applications.
Module content:
Setting up and solving recurrence relations. Equivalence and partial order relations. Graphs: paths, cycles, trees, isomorphism. Graph algorithms: Kruskal, Prim, Fleury. Finite state automata.
Module content:
*Students will not be credited for more than one of the modules for their degree: WTW 264, WTW 286
Theory and solution methods for ordinary differential equations and initial value problems: separable and linear first-order equations, linear equations of higher order, systems of linear equations. Application to mathematical models. Numerical methods applied to nonlinear systems.Qualitative analysis of linear systems.
Minimum credits: 144
Core = 72
Elective = 72
Students must select elective modules with a total number of at least 72 credits.
Depending on a student’s second major and other interests, the following modules are recommended (deviations allowed with permission from the head of department):
Module content:
Theory: Molecular quantum mechanics. Introduction: Shortcomings of classical physics, dynamics of microscopic systems, quantum mechanical principles, translational, vibrational and rotational movement. Atomic structure and spectra: Atomic hydrogen, multiple electron systems, spectra of complex atoms, molecular structure, the hydrogen molecule ion, diatomic and polyatomic molecules, structure and properties of molecules. Molecules in motion: Viscosity, diffusion, mobility. Surface chemistry: Physisorption and chemisorption, adsorption isotherms, surface tension, heterogeneous catalytic rate reactions, capillarity.
Module content:
Separation methods: Extraction, multiple extraction, chromatographic systems. Spectroscopy: Construction of instruments, atomic absorption and atomic emission spectrometry, surface analysis techniques. Mass spectrometry. These techniques are discussed in terms of their use in environmental analysis and the value they contribute to meeting the UN sustainable development goals (#3,6 & 11). Instrumental electrochemistry. The relevance of electrochemistry to providing affordable and clean energy (UN SDG#7) is addressed.
Module content:
Theory: NMR spectroscopy: applications. Aromatic chemistry, Synthetic methodology in organic chemistry. Carbon-carbon bond formation: alkylation at nucleophilic carbon sites, aldol and related condensations, Wittig and related reactions, acylation of carbanions (Claisen condensation). Practical: Laboratory sessions are designed to develop the rational thinking behind the design of organic chemistry experiments. An industrial project specifically prepares students for work in SA industry context and honours projects. As part of this practical programme the UN sustainable development goals must be considered in evaluating the best industrial process.
Module content:
Theory: Structure and bonding in inorganic chemistry. Molecular orbital approach, diatomic and polyatomic molecules, three-centre bonds, metal-metal bonds, transition metal complexes, magnetic properties, electronic spectra, reactivity and reaction mechanisms, reaction types, acid-base concepts, non-aqueous solvents, special topics.
Module content:
Structure, function, bioinformatics and biochemical analysis of (oligo)nucleotides, amino acids, proteins and ligands – and their organisation into hierarchical, higher order, interdependent structures. Principles of structure-function relationships, protein folding, sequence motifs and domains, higher order and supramolecular structure, self-assembly, conjugated proteins, post-translational modifications. Molecular recognition between proteins, ligands, DNA and RNA or any combinations. The RNA structural world, RNAi, miRNA and ribosomes. Cellular functions of coding and non-coding nucleic acids. Basic principles of mass spectrometry, nuclear magnetic resonance spectroscopy, X-ray crystallography and proteomics. Protein purification and characterisation including, pI, molecular mass, amino acid composition and sequence. Mechanistic aspects and regulation of information flow from DNA via RNA to proteins and back. Practical training includes hands-on nucleic acid purification and sequencing, protein production and purification, analysis by SDS-PAGE or mass spectrometry, protein structure analysis and 3D protein modelling.
Module content:
Regulation of metabolic pathways. Analysis of metabolic control. Elucidation of metabolic pathways with isotopes. Metabolomics. Coordinated regulation of glycolysis/gluconeogenesis and glycogen breakdown/synthesis. Enzyme defects in metabolism and consequences. Hormonal regulation and integration of mammalian metabolism. Regulation of fuel metabolism after a meal, period between meals and starvation. Metabolic adaptions during diabetes. Obesity and the regulation of body mass. Obesity, metabolic syndrome and Type 2 diabetes (T2D). Management of T2D with diet, exercise and medication. Practical sessions cover tutorials on case studies and biochemical calculations, isolation of an enzyme, determination of pH and temperature optima, determination of Km and Vmax, enzyme activation and enzyme inhibition.
Module content:
Visualising cell structure and localisation of proteins within cells. Cell ultrastructure. Purification of subcellular organelles. Culturing of cells. Biomembrane structure. Transmembrane transport of ions and small molecules and the role of these processes in disease. Moving proteins into membranes and organelles. Vesicular traffic, secretion, exocytosis and endocytosis. Cell organisation and movement motility based on the three types of cytoskeletal structures including microfilaments, microtubules and intermediate filaments as well as their associated motor proteins. Cell-cell and cell-matrix adhesion through corresponding proteins and morphological structures. Practical training includes tutorials on cytometry and microscopy, mini-research projects where students are introduced and guided through aspects of research methodology, experimental planning techniques associated with cellular assays, buffer preparation, active transport studies in yeast cells, structure-function analyses of actin and binding partners.
Module content:
Molecular mechanisms behind exogenous and endogenous diseases. Foundational knowledge of the immune system, with innate-, adaptive- and auto-immunity (molecular mechanisms of the maintenance and failure of the recognition of foreign in the context of self in the mammalian body) being some of the key concepts. Molecular pathology and immunobiochemistry of exogenous diseases against viral, bacterial and parasitic pathogens with a focus on the human immunodeficiency virus (HIV), tuberculosis (TB) and malaria. Endogenous disease will describe the biochemistry of normal cell cycle proliferation, quiescence, senescence, differentiation and apoptosis, and abnormal events as illustrated by cancer. Tutorials will focus on immunoassays, vaccines, diagnostic tests for diseases and drug discovery towards therapeuticals.
Module content:
The module serves as an introduction to human-environment relations, on contemporary environmental issues in Africa.
The module begins with different theories and schools of thought in human-environment relations, followed by recent and future impacts of human pressures on natural resources, the state of the environment in South Africa, management of critical resources, population trends, biodiversity loss, pollution, water scarcity, desertification, climate change, waste accumulation and management, environmental management tools, environmental education and environmental management legislation. A key focus here is future scenarios for the African continent in terms of SDGs and Aichi targets; given current and projected driving forces.
Module content:
Classic economic development theories and frameworks. Spatial development history and legacy in South Africa. Rural and agricultural reconstruction. Land reform. Urban development and strategy. Urban spatial reconstruction. National spatial development frameworks. Integration of environmental, economic, and social components of sustainable development, including challenges, actors and actions in sustainable development.
Module content:
*Note: The module is available for BSc (Geography) and BSc (Environmental Sciences) students only. The theory content of this module is the same as GGY 363 and students are not allowed to earn credits for both GGY 361 and GGY 363.
Interactions of geomorphic processes within the physical and built environments; themes such as geomorphology and environmental change, slope processes and the environment, geomorphic risks and hazards, soil erosion and conservation, geomorphology in environmental management, applied weathering. Practicals involve fieldwork including sampling and mapping and subsequent laboratory analysis.
Module content:
Advanced theory and practice of Geographic Information Systems; GIS applications; design and implementation of GIS applications. A project or assignments of at least 64 notional hours. Diverse South African examples will be used to expose the students to various data sources, geospatial analyses, and data representation to support the UN Sustainable Development Goals.
Module content:
Construction of Raster Geovisualisations, spatial model construction and use, multi-criteria decision analysis. Factor analysis: Principle component analysis. Geostatistics: Spatial dependence modelling, ordinary kriging. Markov chains and cellular Automata, combined models. Examples using data from South Africa are implemented. A project or assignment of at least 64 notional hours.
Module content:
Direct methods for the numerical solution of systems of linear equations, pivoting strategies. Iterative methods for solving systems of linear equations and eigenvalue problems. Iterative methods for solving systems of nonlinear equations. Introduction to optimization. Algorithms for the considered numerical methods are derived and implemented in computer programmes. Complexity of computation is investigated. Error estimates and convergence results are proved.
Module content:
Axiomatic development of neutral, Euclidean and hyperbolic geometry. Using models of geometries to show that the parallel postulate is independent of the other postulates of Euclid.
Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App