Code | Faculty |
---|---|
02133431 | Faculty of Natural and Agricultural Sciences |
Credits | Duration | NQF level |
---|---|---|
Minimum duration of study: 4 jaar | Totale krediete: 573 | NQF level: 08 |
Minimum requirements | ||||||
Achievement level | ||||||
English Home Language or English First Additional Language | Mathematics | Physical Science | APS | |||
NSC/IEB | AS Level | NSC/IEB | AS Level | NSC/IEB | AS Level | |
5 | C | 5 | C | 5 | C | 32 |
* Cambridge A level candidates who obtained at least a D in the required subjects, will be considered for admission. International Baccalaureate (IB) HL candidates who obtained at least a 4 in the required subjects, will be considered for admission.
Candidates who do not comply with the minimum admission requirements for BScAgric (Applied Plant and Soil Sciences), may be considered for admission to the BSc – Extended programme – Biological and Agricultural Sciences. This programme takes a year longer than the normal programmes to complete.
BSc – Extended Programme – Biological and Agricultural Sciences Minimum requirements | ||||||
Achievement level | ||||||
English Home Language or English First Additional Language | Mathematics | Physical Science | APS | |||
NSC/IEB | AS Level | NSC/IEB | AS Level | NSC/IEB | AS Level | |
4 | D | 4 | D | 4 | D | 26 |
Compilation of curriculum
Students must register for elective modules in consultation with the head of department who must ensure that the modules do not clash on the set timetable.
The Dean may, in exceptional cases and on recommendation of the relevant head of department, approve deviations from the prescribed curriculum.
A student will be promoted to the following year of study if he or she passed 100 credits of the prescribed credits for a year of study, unless the Dean on the recommendation of the relevant head of department decides otherwise. A student who does not comply with the requirements for promotion to the following year of study, retains the credit for the modules already passed and may be admitted by the Dean, on recommendation of the relevant head of department, to modules of the following year of study to a maximum of 48 credits, provided that it will fit in with both the lecture and examination timetable.
Minimum krediete: 140
Fundamental = 12
Core modules = 128
Additional information:
Students who do not qualify for AIM 102 must register for AIM 111 and AIM 121.
Students intending to apply for the BVSc selection have to enrol for MTL 180(12).
Module-inhoud:
Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology. Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.
Module-inhoud:
Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.
Module-inhoud:
Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.
Module-inhoud:
The module aims to equip students with the ability to cope with the reading and writing demands of scientific disciplines.
Module-inhoud:
Simple statistical analysis: Data collection and analysis: Samples, tabulation, graphical representation, describing location, spread and skewness. Introductory probability and distribution theory. Sampling distributions and the central limit theorem. Statistical inference: Basic principles, estimation and testing in the one- and two-sample cases (parametric and non-parametric). Introduction to experimental design. One- and twoway designs, randomised blocks. Multiple statistical analysis: Bivariate data sets: Curve fitting (linear and non-linear), growth curves. Statistical inference in the simple regression case. Categorical analysis: Testing goodness of fit and contingency tables. Multiple regression and correlation: Fitting and testing of models. Residual analysis. Computer literacy: Use of computer packages in data analysis and report writing.
Module-inhoud:
Basic plant structure and function; introductory plant taxonomy and plant systematics; principles of plant molecular biology and biotechnology; adaptation of plants to stress; medicinal compounds from plants; basic principles of plant ecology and their application in natural resource management.
Module-inhoud:
General introduction to inorganic, analytical and physical chemistry. Atomic structure and periodicity. Molecular structure and chemical bonding using the VSEOR model. Nomenclature of inorganic ions and compounds. Classification of reactions: precipitation, acid-base, redox reactions and gas-forming reactions. Mole concept and stoichiometric calculations concerning chemical formulas and chemical reactions. Principles of reactivity: energy and chemical reactions. Physical behaviour gases, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to chemical kinetics.
Module-inhoud:
Theory: General physical-analytical chemistry: Chemical equilibrium, acids and bases, buffers, solubility equilibrium, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and aminoacids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.
Module-inhoud:
Chromosomes and cell division. Principles of Mendelian inheritance: locus and alleles, dominance interactions, extensions and modifications of basic principles.. Probability studies. Sex determination and sex linked traits. Pedigree analysis. Genetic linkage and chromosome mapping. Chromosome variation.
Module-inhoud:
The module will introduce the student to the field of Microbiology. Basic Microbiological aspects that will be covered include introduction into the diversity of the microbial world (bacteria, archaea, eukaryotic microorganisms and viruses), basic principles of cell structure and function, microbial nutrition and microbial growth and growth control. Applications in Microbiology will be illustrated by specific examples i.e. bioremediation, animal-microbial symbiosis, plant-microbial symbiosis and the use of microorganisms in industrial microbiology. Wastewater treatment, microbial diseases and food will be introduced using specific examples.
Module-inhoud:
Introduction to the molecular structure and function of the cell. Basic chemistry of the cell. Structure and composition of prokaryotic and eukaryotic cells. Ultrastructure and function of cellular organelles, membranes and the cytoskeleton. General principles of energy, enzymes and cell metabolism. Selected processes, e.g. glycolysis, respiration and/or photosynthesis. Introduction to molecular genetics: DNA structure and replication, transcription, translation. Cell growth and cell division.
Module-inhoud:
Units, vectors, one dimensional kinematics, dynamics, work, equilibrium, sound, liquids, heat, thermodynamic processes, electric potential and capacitance, direct current and alternating current, optics, modern physics, radio activity.
Module-inhoud:
*Students will not be credited for more than one of the following modules for their degree: WTW 134, WTW 165, WTW 114, WTW 158. WTW 134 does not lead to admission to Mathematics at 200 level and is intended for students who require Mathematics at 100 level only. WTW 134 is offered as WTW 165 in the second semester only to students who have applied in the first semester of the current year for the approximately 65 MBChB, or the 5-6 BChD places becoming available in the second semester and who were therefore enrolled for MGW 112 in the first semester of the current year.
Functions, derivatives, interpretation of the derivative, rules of differentiation, applications of differentiation, integration, interpretation of the definite integral, applications of integration. Matrices, solutions of systems of equations. All topics are studied in the context of applications.
Module-inhoud:
Animal classification, phylogeny organisation and terminology. Evolution of the various animal phyla, morphological characteristics and life cycles of parasitic and non-parasitic animals. Structure and function of reproductive,
respiratory, excretory, circulatory and digestive systems in various animal phyla. In-class discussion will address the sustainable development goals #3, 12, 13, 14 and 15 (Good Health and Well-being. Responsible Consumption and Production, Climate Action, Life Below Water, Life on Land).
Minimum krediete: 135
Module-inhoud:
Structural and ionic properties of amino acids. Peptides, the peptide bond, primary, secondary, tertiary and quaternary structure of proteins. Interactions that stabilise protein structure, denaturation and renaturation of proteins. Introduction to methods for the purification of proteins, amino acid composition, and sequence determinations. Enzyme kinetics and enzyme inhibition. Allosteric enzymes, regulation of enzyme activity, active centres and mechanisms of enzyme catalysis. Examples of industrial applications of enzymes and in clinical pathology as biomarkers of diseases. Introduction to practical laboratory techniques and Good Laboratory Practice. Techniques for the quantitative and qualitative analysis of biological molecules, enzyme activity measurements . Processing and presentation of scientific data.
Module-inhoud:
Origin and affinity of South African flora and vegetation types; principles of plant geography; plant diversity in southern Africa; characteristics, environments and vegetation of South African biomes and associated key ecological processes; centra of plant endemism; rare and threatened plant species; biodiversity conservation and ecosystem management; invasion biology; conservation status of South African vegetation types.
Module-inhoud:
Nitrogen metabolism in plants; nitrogen fixation in Agriculture; plant secondary metabolism and natural products; photosynthesis and carbohydrate metabolism in plants; applications in solar energy; plant growth regulation and the Green Revolution; plant responses to the environment; developing abiotic stress tolerant and disease resistant plants. Practicals: Basic laboratory skills in plant physiology; techniques used to investigate nitrogen metabolism, carbohydrate metabolism, pigment analysis, water transport in plant tissue and response of plants to hormone treatments.
Module-inhoud:
Origin and development of soil, weathering and soil formation processes. Profile differentiation and morphology. Physical characteristics: texture, structure, soil water, atmosphere and temperature. Chemical characteristics: clay minerals, ion exchange, pH, buffer action, soil acidification and salinisation of soil. Soil fertility and fertilisation. Soil classification. Practical work: Laboratory evaluation of simple soil characteristics. Field practicals on soil formation in the Pretoria area.
Module-inhoud:
The chemical nature of DNA. The processes of DNA replication, transcription, RNA processing, translation. Control of gene expression in prokaryotes and eukaryotes. Recombinant DNA technology and its applications in gene analysis and manipulation.
Module-inhoud:
Chromosome structure and transposable elements. Mutation and DNA repair. Genomics and proteomics. Organelle genomes. Introduction to genetic analysis of populations: allele and genotypic frequencies, Hardy Weinberg Law, its extensions and implications for different mating systems. Introduction to quantitative and evolutionary genetics.
Module-inhoud:
Introduction to financial management in agriculture: Farm management and agricultural finance, farm management information; analysis and interpretation of farm financial statements; risk and farm planning. Budgets: partial, break-even, enterprise, total, cash flow and capital budgets. Time value of money. Introduction to production and resource use: the agricultural production function, total physical product curve, marginal physical product curve, average physical product curve, stages of production. Assessing short-term business costs; Economics of short-term decisions. Economics of input substitution: Least-cost use of inputs for a given output, short-term least-cost input use, effects of input price changes. Least-cost input use for a given budget. Economics of product substitution. Product combinations for maximum profit. Economics of crop and animal production.
Module-inhoud:
The agribusiness system; the unique characteristics of agricultural products; marketing functions and costs; market structure; historical evolution of agricultural marketing in South Africa. Marketing environment and price analysis in agriculture: Introduction to supply and demand analysis.
Marketing plan and strategies for agricultural commodities; market analysis; product management; distribution channels for agricultural commodities, the agricultural supply chain, the agricultural futures market.
Module-inhoud:
Development and importance of crop protection. Basic principles in crop protection i.e. epidemic development of disease and insect pest populations, ecology of plant diseases and abiotic factors that affect plant health i.e. environmental pollution and pesticides, nutrient deficiencies and extreme environmental conditions. Ecological aspects of plant diseases, pest outbreaks and weed invasion. Important agricultural pests and weeds, globally as well as in African context. Life cycles of typical disease causing organisms. Basic principles of integrated pest and disease management. The importance of crop protection in the context of sustainable development will be highlighted.
Module-inhoud:
Fundamental principles of plant pathology. The concept of disease in plants. Causes of plant diseases. Stages in development of plant diseases. Disease cycles and selected examples relevant to Africa. Diagnosis of plant diseases and the sustainable development goals that articulate with plant pathology.
Module-inhoud:
Influence of climate on cropping systems in South Africa. The surface energy balance. Hydrological cycles and the soil water balance. Sustainable crop production. Simple radiation and water limited models. Potential yield, target yield and maximum economic yield. Crop nutrition and fertiliser management. Principles of soil cultivation and conservation. Climate change and crop production – mitigation and adaptation.
Minimum krediete: 148
Module-inhoud:
Botanical characteristics, classification, growth requirements, production practices and utilization of crops rich in starch, oil, sugar and protein, fibre crops, narcotic and medicinal plants. The use of conservation agriculture (CA) in field crop production is becoming ever increasingly important, especially since it is directly related to Sustainable Development Goals (SDGs) 2 (food), 6 (water), 7 (energy) 13 (climate) and 15 (soil). During the semester applicable AC and SDG examples will be highlighted. Practicals will consist out of a trial on the experimental farm and visits to research institutions and producers.
Module-inhoud:
The emphasis is on the efficiency of the mechanisms whereby C3-, C4 and CAM-plants bind CO2 and how it impacted upon by environmental factors. The mechanisms and factors which determine the respiratory conversion of carbon skeletons and how production is affected thereby will be discussed. Insight into the ecological distribution and manipulation of plants for increased production is gained by discussing the internal mechanisms whereby carbon allocation, hormone production, growth, flowering and fruitset are influenced by external factors. To understand the functioning of plants in diverse environments, the relevant structural properties of plants, and the impact of soil composition, water flow in the soil-plant air continuum and long distance transport of assimilates will be discussed. Various important techniques will be used in the practicals to investigate aspects such as water-use efficiency, photosynthesis and respiration of plants.
Module-inhoud:
The more exact chemistry of soils systematically explained by understanding the particular chemical principles. Charge origin. Chemical equilibriums. Manifestations of sorption. Ion exchange. Acidic soils, saline soils and the organic fraction of soil. The chemistry of the important plant nutrient elements P, K and N is explained.
Module-inhoud:
A taxonomic system for South Africa. USDA’s Soil Taxonomy. Land suitability evaluation. Optimal resource utilization. The conservation component. Ecological aspects. Ecotype, land types. Soil maps. Practical work: Field practicals and compulsory excursion. Identification of soil horizons, forms and families. Land suitability evaluation. Elementary mapping exercise.
Module-inhoud:
The organised nursery industry in South Africa. Principles: seed production; seed germination; rooting of cuttings; budding and grafting; propagation using specialised organs; micro propagation (tissue culturing). Practices: Greenhouse construction, lighting in the nursery; cooling and heating; soil-based and soil-less growing media; container types; irrigation and fertilisation; growth manipulation; pest and disease management. Management, economic and marketing aspects of a typical nursery operation. Students will get hands-on experience and will visit nurseries.
Module-inhoud:
Quantitative description and measurement of soil water content and potential as well as saturated and unsaturated hydraulic conductivity. Modelling water flow in soil (Darcy’s law, Richards's equation). Infiltration, redistribution, evaporation, runoff and percolation. Irrigation in South Africa. Modelling and managing the soil water balance. Plant water consumption and the soil-plant-atmosphere continuum. Irrigation scheduling (soil, plant and atmosphere approaches). Managing poor quality water. Irrigation systems. The module includes a field trip to an irrigation scheme.
Module-inhoud:
Principles of plant disease control and how it resonates with the sustainable development goals. Non-chemical control including biological control, disease resistance, regulatory measures, cultivation practices, physical methods. Modern chemo-therapy: characteristics, mode of action and application of bioproducts, fungicides, bactericides and nematicides. Principles of integrated disease management. The module will also cover applicable South African legislation, the local crop protection industries and the procedure of registering new chemicals.
Module-inhoud:
The influence of biotic and abiotic factors on the productivity of different strata and components of natural pastures. This will enable the student to advise users, with the necessary motivation, on the appropriate use of these strata and components and will form a basis for further research on this system. The principles of veld management s and the influence of management practices on sustainable animal production from natural pastures. This will enable the student to advise users on veld management and veld management principles. It will also form a basis for further research on veld management.
Module-inhoud:
The establishment and use of planted pastures species and fodder crops and the
conservation of fodder. This will enable students to advise users on establishment and utilization of planted pastures species as well as farmers on the production,
conservation and optimum use of fodder. This will also form a basis for further research on planted pastures.
Module-inhoud:
Impact of insects on economies, human health and well-being. Protection of crops from insect herbivores through monitoring, forecasting and application of the principles of integrated pest management; epidemiology and modern developments in the control of insect vectors of human and animal diseases; insects as a tool in forensic investigations; ecological and economic significance of insect pollinators and current threats to their survival and health. Lectures will be complemented by practical experiences that provide students with skills in the design, analysis, interpretation and reporting of applied entomological research. Examples used in this module are directly relevant to the sustainable development goals of Life on Land, No Poverty, Zero Hunger and Good Health and Well-being.
Minimum krediete: 150
Module-inhoud:
Integration of agronomic, pedological, botanical, economic and management considerations in crop production systems with a view to sustainable maximum economic yield. The importance of vegetables in Sustainable Development Goals 1 (poverty), 2 (food), 3 (health), 4 (education), and 12 (reduced wastage) will be highlighted in case studies of specific vegetable crops. Practicals will consist out of a trial on the experimental farm and a visit to the Tshwane fresh produce market.
Module-inhoud:
An overview of photosynthesis and respiration, with the aim of examining the physiological basis of yield in cropping systems. This includes an assessment of parameters for determining plant growth, factors governing yield, partitioning of photoassimilates within plants and opportunities for increasing yield. Crop growth and yield will be put into context of a changing global climate. Evaluation of the manner in which plants respond to various abiotic stresses and how plants sense changing environments. The various roles of plant growth regulators in plants and the importance of these compounds in agriculture.
Module-inhoud:
The principles of experimental design as required for the selection of an appropriate research design. Identification of the design limitations and the impact thereof on the research hypotheses and the statistical methods. Identification and application of the appropriate statistical methods needed. Interpreting of statistical results and translating these results to the biological context.
Module-inhoud:
Soil ultimately controls nutrient supply to plants and organisms. The health and resilience of biota are therefore closely link to the interaction between the pedosphere and the biosphere. This course deals with the availability and uptake of macro and micro nutrients in the plant - microbial– soil system, nutrient deficiencies and toxicities, as well as soil properties and soil environmental conditions that influence soil fertility and its suitability to act as a growth medium. Practical work includes the laboratory evaluation of soil fertility and greenhouse pot trials to investigate nutrient uptake as well as deficiencies and toxicities symptoms in plants.
Module-inhoud:
Crop modelling, climate zones, climate requirements, cultivation regions, economic importance, anatomy and morphology, phenological modelling. Commercially important scions, rootstocks and their interactions. Crop management including fertilization, irrigation, pest and disease complex, tree and fruit manipulation, physiological disorders of economically important tropical, subtropical and temperate fruit crops produced in Southern Africa. The important role fruit production can play in achieving the Sustainable Development Goals will be highlighted, with emphasis placed on the sustainable use of resources.
Module-inhoud:
Economic importance of cut flowers, ornamentals and turfgrass. Taxonomy and plant description. Climatic requirements and production practices including establishing, growth manipulation, nutritional requirements, irrigation, pest and disease control, harvest and post-harvest handling. Identification of ornamental plants for commercial and landscape use. Climatic, reproduction and maintenance requirements for trees, palms, cycads, shrubs, flowering plants, ground covers, turfgrass, climbers and indoor plants. Functional and aesthetic value of plants in a landscape or indoors. Excursions to nurseries and practical experience on the experimental farm is compulsory for all participants in this module.
Module-inhoud:
Environmental variables. Quantitative description and measurement of atmospheric environmental variables and water in organisms. Mass and energy fluxes. Quantitative description of energy fluxes in organisms' environments. Energy balances of animals and plant communities will be derived.
Module-inhoud:
Identification of important weeds of crops, gardens and recreational areas.
Identification of alien invasive and indigenous encroaching species. Impacts of weeds on desirable vegetation. Interference between crop and weed species through allelopathy and competition phenomena. Role of weeds in plant-biodiversity and crop production potential. Weeds in annual and perennial crop situations. Weed biology and ecology. Mechanical, cultural, biological and chemical weed management practices. Integrated weed management. Herbicide formulations and application techniques. Modes of action of herbicides, and their behaviour and fate in the environment.
Module-inhoud:
Basic principles of the scientific process. Literature accessing and article assessment. Manuscript preparation and presentation of seminars. Basic instruction on the use of visual aids, etc. for effective oral presentations.
Module-inhoud:
The production potential and quality of pastures as influenced by botanical composition, vegetation cover, livestock grazing and browsing potential, soil chemical, physical and biological conditions in addition to other important environmental processes are addressed. Pasture selection for different purposes and the importance of pasture management requirements within a planned livestock fodder flow system are taught. Monitoring pastures (both natural and cultivated) in different biomes of Southern Africa, through different assessment techniques to understand the health, production potential and quality thereof is explained. The different utilisation methods of pastures, as influenced by the livestock factor and their effects on the pastures regrowth potential, in addition to soil quality aspects are important principles that determine the value of pastures. The evaluation of grasses and other vegetation types in terms of adaptation, acceptability and adaptability to environmental and management conditions are important to an integrated and adaptive pasture and livestock production system.
Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App