Code | Faculty | Department |
---|---|---|
12130003 | Faculty of Engineering, Built Environment and Information Technology | Department: Electrical, Electronic and Computer Engineering |
Credits | Duration | NQF level |
---|---|---|
Minimum duration of study: 4 jaar | Totale krediete: 568 | NQF level: 08 |
All fields of study of the BEng degree have been accredited by the Engineering Council of South Africa (ECSA), and comply with the academic requirements for registration as a professional engineer. The programmes are designed in accordance with the outcomes-based model as required by the South African Qualifications Authority (SAQA). The learning outcomes and contents of the programmes have been compiled in accordance with the latest accreditation standards (PE-60 and PE-61) of ECSA, which also comply with the SAQA requirements, and which are summarised as follows:
Learning outcomes of the BEng degree:
A graduate in engineering should be able to apply the following skills on an advanced level:
Learning contents of the BEng programmes:
Six essential knowledge areas are included in the syllabi of the programmes. The typical representation of each knowledge area as a percentage of the total contents of an undergraduate programme is given in brackets ( ) in the list below. This percentage varies for the different study directions, but conforms in all instances to the minimum knowledge area content as stipulated by ECSA.
Knowledge areas:
Note: The Engineering Council of South Africa (ECSA) accredits our programmes and our degrees meet the requirements for Professional Engineers in SA.
Transferring students
Candidates previously registered for the BSc – Extended programme
The Admissions Committee of the faculty considers applications of candidates who were previously registered for the BSc – Extended programme, on grounds of their NSC results as well as academic merit. Such students will only be considered for the four-year programme if they have passed all the prescribed modules and obtained a minimum of 65% in the Mathematics, Physics and Chemistry modules, respectively.
Candidates previously registered at UP or at another university
The faculty’s Admissions Committee considers applications of candidates who have already completed the final NSC examination and/or were previously registered at UP or at another university, on grounds of their NSC results as well as academic merit. Candidates who were dismissed from other faculties or universities will not be considered.
Candidates previously registered at a teacher’s college or university of technology
The faculty’s Admissions Committee considers the application of these candidates on the grounds of their NSC results as well as academic merit.
Qualifications from countries other than South Africa
University of Pretoria website: click here
Minimum requirements | ||||||
Achievement level | ||||||
English Home Language or English First Additional Language | Mathematics | Physical Sciences | APS | |||
NSC/IEB | AS Level | NSC/IEB | AS Level | NSC/IEB | AS Level | |
5 | C | >65% | C | >65% | C | 33 |
* Cambridge A level candidates who obtained at least a D in the required subjects, will be considered for admission. Students in the Cambridge system must offer both Physics AND Chemistry with performance at the level specified for NSC Physical Sciences in the table above.
* International Baccalaureate (IB) HL candidates who obtained at least a 4 in the required subjects, will be considered for admission. Students in the IB system must offer both Physics AND Chemistry with performance at the level specified for NSC Physical Sciences in the table above.
ENGAGE Programme minimum requirements | ||||||
Achievement level | ||||||
English Home Language or English First Additional Language | Mathematics | Physical Sciences | APS | |||
NSC/IEB | AS Level | NSC/IEB | AS Level | NSC/IEB | AS Level | |
5 | C | 5 | C | 5 | C | 30 |
With a few exceptions, most modules offered at the School of Engineering are semester modules having credit values of either 8 or 16.
A student may be permitted by the Dean, on recommendation of the relevant head of department, to register for an equivalent module in an alternate semester, although the module is normally offered to the student’s group in another semester, and providing that no timetable clashes occur.
Please note:
Promotion to the second semester of the first year and to the second year of study (Eng. 14)
Please note:
Promotion to the third year of study of the Four-year Programme, as well as to the third and the fourth years of study of the ENGAGE Programme. In case of the fourth year of study of the ENGAGE Programme, the words "first", "second" and "third" must be substituted with the words "second", "third" and "fourth" respectively. (Eng. 15)
Promotion to the fourth year of study of the Four-year Programme, as well as to the fifth year of study of the ENGAGE Programme. In case of the fifth year of study of the ENGAGE Programme, the words "second", "third" and "fourth" must be substituted with the words "third", "fourth" and "fifth" respectively. (Eng. 16)
Minimum krediete: 144
Module-inhoud:
General introduction to inorganic, analytical and physical chemistry. Nomenclature of inorganic ions and compounds, stoichiometric calculations concerning chemical reactions, redox reactions, solubilities and solutions, atomic structure, periodicity. Molecular structure and chemical bonding using the VSEPR model. Principles of reactivity, electrochemistry, energy and chemical reactions, entropy and free energy.
Appropriate tutorial classes and practicals.
Module-inhoud:
Electrical quantities, units, definitions, conventions. Electrical symbols, ideal and practical current and voltage sources, controlled sources. Ohm’s law in resistive circuits, Kirchoff’s current and voltage laws, resistors in series and parallel circuits, voltage and current division, mesh current and node voltage methods. Circuit theorems: linearity, superposition, Thevenin and Norton equivalent circuits, sources transformation, power calculation, maximum power transfer. Energy storage elements: current, voltage, power and energy in inductors and capacitors, inductors and capacitors in series and parallel. Ideal operational amplifiers and applications: inverting and noninverting amplifiers, summing amplifiers, current sources, integrators.
Module-inhoud:
Introductory mathematics: Symbols, exponents, logarithms, angles in degrees, radial measure, goniometry, differentiation, and integration. Motion along a straight line: position and displacement, acceleration. Vectors: adding vectors, components, multiplying vectors. Motion in two and three dimensions: projectile motion, circular motion. Force and motion: Newton’s Law, force, friction. Kinetic energy and work: work, power. Potential energy: Centre of mass, linear momentum. Collisions: impulse and linear momentum, elastic collisions, inelastic collisions. Rotation: kinetic energy of rotation, torque. Oscillations and waves: Simple harmonic motion, types of waves, wavelength and frequency, interference of waves, standing waves, the Doppler effect. Temperature, heat and the first law of thermodynamics.
Module-inhoud:
Social sciences: Perspectives on contemporary society
An introduction to long-standing questions about the nature of human societies and contemporary challenges. Topics to be discussed include globalisation and increasing connectedness; rising unemployment, inequality and poverty; rapid urbanisation and the modern city form; transformations in the nature of work; environmental degradation and tensions between sustainability and growth; shifts in global power relations; the future of the nation-state and supra-national governance structures; and possibilities for extending human rights and democracy. Critical questions are posed about modern selfhood, sociality, culture and identity against the background of new communications technologies, ever more multicultural societies, enduring gender, class and race inequities, and the emergence of new and the resurgence of older forms of social and political identity. These issues are approached from the vantage of our location in southern Africa and the continent, drawing on social science perspectives.
Module-inhoud:
Humanities: Text, culture and communication
Successful communication of ideas, values and traditions depends on understanding both the literal and implied meanings of texts. In this module students are introduced to a variety of texts, including original literary and visual texts, with a view to developing an understanding of how textual meanings have been constructed and negotiated over time. Students are encouraged to understand themselves as products of – and participants in – these traditions, ideas and values. Appropriate examples will be drawn from, among others, the Enlightenment, Modernism, Existentialism, Postmodernism and Post-colonialism.
Module-inhoud:
Freehand sketching covering the following: perspective, isometric and orthographic drawings. Drawing conventions, graphical techniques and assembly drawings. Evaluation of drawings and error detection. True lengths of lines, projections and intersections. Practical applications of these techniques. Introduction to computer-aided drawings, including dimensioning, crosshatching and detailing. Introduction to basic manufacturing processes including primary (casting, forging and extrusion) and secondary (drilling, turning, milling, grinding, broaching and sawing) manufacturing procedures.
Module-inhoud:
Introduction to materials: the family of materials, atomic structure and types of bonding, crystal types and space arrangement of atoms, directions and planes in crystals, defects in crystals, diffusion in solids. Mechanical properties of materials: stress and strain, mechanical testing (strength, ductility, hardness, toughness, fatigue, creep), plastic deformation, solid-solution hardening, recrystallisation.
Polymeric materials: polymerisation and industrial methods, types of polymeric materials and their properties. Corrosion of metals: mechanisms and types of corrosion, corrosion rates, corrosion control. The heat treatment of steel: Fe-C phase diagram, equilibrium cooling, hardening and tempering of steel, stainless steel. Composite materials: Introduction, fibre reinforced polymeric composites, concrete, asphalt, wood.
Module-inhoud:
Equivalent force systems, resultants. Newton's laws, units. Forces acting on particles. Rigid bodies: principle of transmissibility, resultant of parallel forces. Vector moments and scalar moments. Relationship between scalar- and vector moments. Couples. Equivalent force systems on rigid bodies. Resultants of forces on rigid bodies. Equilibrium in two and three dimensions. Hooke's law. Trusses and frameworks. Centroids and second moments of area. Beams: distributed forces, shear force, bending moment, method of sections, relationship between load, shear force and bending moment.
Module-inhoud:
*This module is designed for first-year engineering students. Students will not be credited for more than one of the following modules for their degree: WTW 158, WTW 114, WTW 134, WTW 165.
Introduction to vector algebra. Functions, limits and continuity. Differential calculus of single variable functions, rate of change, graph sketching, applications. The mean value theorem, the rule of L'Hospital. Indefinite integrals, integration.
Module-inhoud:
*This module is designed for first-year engineering students. Students will not be credited for more than one of the following modules for their degree: WTW 146, WTW 148 and WTW 124,
Vector algebra with applications to lines and planes in space, matrix algebra, systems of linear equations, determinants, complex numbers, factorisation of polynomials and conic sections. Integration techniques, improper integrals. The definite integral, fundamental theorem of Calculus. Applications of integration. Elementary power series and Taylor’s theorem. Vector functions, space curves and arc lengths. Quadratic surfaces and multivariable functions.
Minimum krediete: 148
Module-inhoud:
Engineering systems are often subjected to variation, uncertainty and incomplete information. Mathematical statistics provides the basis for effectively handling and quantifying the effect of these factors. This module provides an introduction to the concepts of mathematical statistics and will include the following syllabus themes: data analysis, probability theory, stochastic modelling, statistical inference and regression analysis.
Module-inhoud:
This module introduces imperative computer programming, which is a fundamental building block of computer science. The process of constructing a program for solving a given problem, of editing it, compiling (both manually and automatically), running and debugging it, is covered from the beginning. The aim is to master the elements of a programming language and be able to put them together in order to construct programs using types, control structures, arrays, functions and libraries. An introduction to object orientation will be given. After completing this module, the student should understand the fundamental elements of a program, the importance of good program design and user-friendly interfaces. Students should be able to conduct basic program analysis and write complete elementary programs.
Module-inhoud:
Transient response phenomena in RC, RL and RLC circuits: Natural response and step response. Alternating current (AC) circuits: Phasors, impedances, and power in AC circuits. The application of Ohm’s law, Kirchoff’s circuit theorems, matrix methods and Thevenin and Norton equivalents to sinusoidal steady-state analysis. Three-phase circuits: Balanced three-phase circuits, star/delta configurations, and three-phase power transfer calculations. Magnetically coupled circuits: Mutual inductance, coupling factor, transformers, ideal transformers and autotransformers. Application of circuit theory to an induction machine: basic principles of induction machines, equivalent circuit and analysis thereof, calculation of power and torque through application of Thevenin's theorem. Synoptic introduction to other types of machines.
Module-inhoud:
Communicate effectively, both orally and in writing, with engineering audiences and the community at large. Written communication as evidenced by: uses appropriate structure, use of modern or electronic communication methods; style and language for purpose and audience; uses effective graphical support; applies methods of providing information for use by others involved in engineering activity; meets the requirements of the target audience. Effective oral communication as evidenced by appropriate structure, style and language; appropriate visual materials; delivers fluently; meets the requirements of the intended audience. Audiences range from engineering peers, management and lay persons, using appropriate academic or professional discourse. Typed reports range from short (300-1 000 word plus tables diagrams) to long (10 000-15 000 words plus tables, diagrams, references and appendices), covering material at exit level. Methods of providing information include the conventional methods of the discipline, for example engineering drawings, as well as subject-specific methods.
Module-inhoud:
Frequency domain analysis of linear time-invariant systems. Laplace, Fourier and Z-transforms applied to periodic, aperiodic and sampled signals; exponential and trigonometric Fourier series. Nyquist sampling theorem, transfer functions, poles and zeros, bandwidth and rise time, frequency response, impulse response, Bode diagrams, natural frequency, natural and forced response. Instability and oscillations. Computer simulation.
Module-inhoud:
This module is presented during the recess period at the end of the first semester. The module serves as an introduction to programming and computer simulations using a high-level industry-standard programming language to develop and support problem solving. Students will be informed by the Department if, for practical reasons, the module needs to be offered in a different time slot.
Module-inhoud:
This module is presented during one of the recess periods during the second year of study. In this module the student will become acquainted with relevant regulations and legislation and basic aspects of wiring practice.Students will be informed by the Department if, for practical reasons, the module needs to be offered in a different time slot.
Module-inhoud:
Introduction to digital circuit design, digital representations of numbers, device electronics in digital circuits, representation and simplification of logic functions, components of combinational circuits, analysis and design of combinational circuits, components of sequential circuits, analysis and design of sequential circuits, programmable components for combinatorial and sequential logic.
Module-inhoud:
This module is integrated into all undergraduate academic programmes offered by the Faculty. Main objectives: execution of a community project aimed at achieving a beneficial impact on a section of a socio-economically underprivileged community located in socio-economically deprived areas our society; awareness of personal, social and cultural values and an understanding of social issues; and development of life skills.
Module-inhoud:
Kinetics of systems of particles, Newton’s 2nd law generalised for a system of particles, rate of change of momentum and angular momentum relations, work-energy relations, conservation laws, steady mass flow. Plane kinematics of rigid bodies, rotation, translation, general 2D motion, relative motion analysis. Moments and products of inertia. Plane kinetics of rigid bodies, equations of motion, rotation, translation, general 2D motion, work-energy relations. Vibration and time response.
Module-inhoud:
Linear algebra, eigenvalues and eigenvectors with applications to first and second order systems of differential equations. Sequences and series, convergence tests. Power series with applications to ordinary differential equations with variable coefficients. Fourier series with applications to partial differential equations such as potential, heat and wave equations.
Module-inhoud:
Theory and solution methods for linear differential equations as well as for systems of linear differential equations. Theory and solution methods for first order non-linear differential equations. The Laplace transform with application to differential equations. Application of differential equations to modelling problems.
Module-inhoud:
Calculus of multivariable functions, directional derivatives. Extrema. Multiple integrals, polar, cylindrical and spherical coordinates. Line integrals and the theorem of Green. Surface integrals and the theorems of Gauss and Stokes.
Module-inhoud:
Numerical integration. Numerical methods to approximate the solution of non-linear equations, systems of equations (linear and non-linear), differential equations and systems of differential equations. Direct methods to solve linear systems of equations.
Minimum krediete: 148
Module-inhoud:
The purpose of this module is to develop knowledge and understanding of engineering management principles and economic decision-making so that students can design, manage, evaluate and participate in engineering projects in the workplace. As such elements from engineering economics, project management and systems engineering are combined.
This module develops and assesses the students’ competence in terms of ECSA Exit Level Outcome 11 relating to Engineering Management.
Module-inhoud:
Modelling and simulation of physical systems. Block and signal flow diagrams. State variable formulation. Time and frequency domain analysis. Stability and sensitivity. Design methods, cascade (eg. PID) and feedback controllers.
Module-inhoud:
Semiconductor components: Power diodes, silicon-controlled-rectifiers, bipolar transistors, power mosfets, IGBTs, emerging devices. Ancillary issues: Heat sinks, snubbers, gate drive circuits. Converter topologies: AC-DC converters, DC-DC converters; Applications: Sizing of converter components, isolated high-frequency power supplies.
Module-inhoud:
Single and three-phase basic concepts, Transformers: the ideal transformer, equivalent circuit, single and three-phase transformers, auto-transformers, tap changing transformers. Synchronous machines: equivalent circuit, real and reactive power control, two-axis machine model. Transmission lines, Underground Cables, Capacitors, Reactors, Single and three-phase induction motors, Load modelling.
Module-inhoud:
Magnetic circuits: flux, flux density, reluctance, hysteresis, MMF.Magnetic Energy, Conversion: Process, field energy, mechanical force in electromagnetic systems. Transformers: Types of transformers, per unit system, voltage regulation and efficiency, three phase circuit analysis. Principles of machines: Torque, speed, efficiency and heat loss, circuit models. Machines: Power transformers, DC motors, induction motors.
Module-inhoud:
Hardware based introduction to system designing microprocessors. General microprocessor architecture assembly language and limited C embedded code development, with specific focus on a RISC (Microchip PIC 18) and MIPS (Microchip PIC 32) type processor, memory interfacing and address decoding, microprocessor input/output and interfacing, general programming concepts, general microprocessor system design principles, current trends and new processors exposure to development boards and integrated development environments.
Module-inhoud:
Transmission line equations, wave propagation, input impedance, power flow; Electrostatics, charge and current, laws of Coulomb and Gauss, scalar potential, properties of materials, boundary conditions, capacitance, Magnetostatics, laws of Biot-Savart and Ampère, magnetic properties of materials, boundary conditions; Plane wave propagation, polarisation, power density; Wave reflection and transmission, normal and oblique incidence.
Module-inhoud:
Amplifier concepts: gain, input impedance, output impedance, bandwidth, cascaded stages. Amplifier power dissipation and power efficiency. Operational amplifiers: non-ideal, limitations, low power, programmable. Diode operational circuits: Logarithmic amplifiers, peak detector, clamp, absolute value, voltage regulators. Feedback and stability in amplifiers. Operational circuits: Instrumentation amplifiers, multipliers, oscillators, filters, translinear circuits, and sampling electronics.
Module-inhoud:
This module is presented during one of the recess periods in the third year of study. The module is an introduction to digital signal processors (DSPs) for electrical engineering students. The first of three days is dedicated to theory lectures introducing DSP and addressing quantisation, sampling theory, anti-aliasing filters, correlation, convolution, DFT, inverse DFT, Z- transforms, digital filters (low pass, anti-aliasing, FIR and IIR) and the design thereof. PCB layout techniques, decoupling and bypass capacitors relating to digital circuits are addressed. At the end of the theory sessions students need to design a filter. The practical work over the last two days consists of implementing the filter designed as well as coding DAC, FIR, IIR and PWM for a DSP. The DAC, FIR, IIR and PWM are implemented in hardware/firmware and the results displayed on an oscilloscope. At the end of the module each student will demonstrate a working system consisting of the developed firmware and hardware performing the required signal processing functions. Students will be informed by the Department if, for practical reasons, the module needs to be offered in a different time slot.
Module-inhoud:
In this module, students are required to generate a creative system design through synthesis and integration of components and subsystems. Students have to acquire technical knowledge through independent learning, and demonstrate a competency to work in a technical design team to realise and demonstrate a working product. This practical component is augmented by theoretical instruction in the fundamentals of system engineering, industry standards and practices, design for operational feasibility, power transformer design, power cable design, power capacitor design and protection system design.
Module-inhoud:
Two exit learning outcomes (ELO) of ECSA are addressed and each must be passed in the same semester. ELO7: Demonstrate critical awareness of the impact of engineering activity on the social, industrial and physical environment. The history of engineering globally and in South Africa. Most important engineering projects globally and in South Africa. The impact of technology on society. Occupational and public health and safety. Occupational Health and Safety Act. Impacts on the physical environment. The personal, social, cultural values and requirements of those affected by engineering activity. The combination of social, workplace (industrial) and physical environmental factors are appropriate to the discipline of the qualification. ELO8: Demonstrate competence to work effectively on a small project as an individual, in teams and in multidisciplinary environments. Identifies and focuses on objectives. Works strategically. Executes tasks effectively. Delivers completed work on time. Effective team work: Makes individual contribution to team activity; performs critical functions; enhances work of fellow team members; benefits from support of team members; communicates effectively with team members; delivers completed work on time. Multidisciplinary work by the following: Acquires a working knowledge of co-workers’ discipline; uses a systems engineering approach; communicates across disciplinary boundaries. Report and presentation on team project. Tasks require co-operation across at least one disciplinary boundary. Students acquire a working knowledge of co-workers discipline. Students communicate between disciplinary boundaries.
Minimum krediete: 152
Module-inhoud:
Single and three-phase DC-AC invertors, PWM, 4-quadrant conversion, DC and AC variable speed drives and high frequency transformer design.
Module-inhoud:
Plant automation issues. The steps taken to establish controllers for industrial processes. Static and dynamic properties of sensors and actuators. Obtaining models from process data. Plant automation platforms. Model-bases PID and internal model control. Turning and troubleshoot control loops. Unconstrained single-input-single-output model predictive control. Economic evaluation of automation systems.
Module-inhoud:
Power flow: bus admittance matrix, bus impedance matrix, Gauss Seidal and Newton Raphson methods. Fault analysis: balanced fault analysis, symmetrical components, unbalanced fault analysis. Power system protection: definite time, invese-definite-minimum-time (IDMT), introduction to over-current and earth fault protection, distribution system protection, transmission system protection, reticulation system protection. Sizing of protection devices. High voltage control: over-voltages, transients.
Module-inhoud:
Specific niche areas from electrical engineering are addressed within the context of a research project. The student should be able to demonstrate competence in designing and conducting investigations and experiments; to analyse the results; to select and use appropriate engineering tools and software; to interpret and derive information from the data; to draw conclusions based on evidence and to communicate the purpose, process and outcomes in a report.
Module-inhoud:
This module entails the individual completion of an engineering project from concept to delivery. The student must demonstrate independent mastery of an engineering project. The module focuses on the formulation of an engineering problem, the development of appropriate technical specifications, project planning and management and then completion of a technical project of a given nature, scope and complexity. The nature of projects is either mainly design (design, synthesis and testing) with a smaller component of investigation (experimental work and data analysis), or, alternatively, mainly investigation with a smaller component of design. As final step in the project, the student evaluates the final outcome of the design or investigation against the specifications and he/she also evaluates the impact of the project (social, legal, safety and environmental). Oral and written technical communication is evaluated as an important part of the module.
Module-inhoud:
Four weeks practice-orientated experience at any institution of the student’s choice (preferably in electrical, electronic or computer engineering). The student must acquire experience in the working environment and more specifically work ethics, ecology, economy, punctuality, knowledge of human nature, etc. One week after the commencement of the second semester the student must submit a report on the aspects of his/her work experience as determined by the Head of the Department.
Module-inhoud:
Requirements to maintain continued competence and to keep abreast of up-to date tools and techniques. ECSA code of conduct, Continuing Professional Development, ECSA outcomes, ECSA process and reasons for registration as CEng and PrEng. Displays understanding of the system of professional development. Accepts responsibility for own actions. Displays judgment in decision making during problem solving and design. Limits decision making to area of current competence. Reason about and make judgment on ethical aspects in case study context. Discerns boundaries of competence in problem solving and design. Case studies typical of engineering practice situations in which the graduate is likely to participate.
Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App