Code | Faculty | Department |
---|---|---|
07130052 | Faculty of Economic and Management Sciences | Department: Economics |
Credits | Duration | NQF level |
---|---|---|
Minimum duration of study: 3 years | Total credits: 418 | NQF level: 07 |
The purpose of this qualification is to provide graduates with knowledge on the working of economics and economic policy in South Africa and the influence exerted on it by the global economy and general markets conditions, related to government policy and regulation. This programme will provide students with the necessary theoretical and applied principles of the instruments and effects of economic policy, such as fiscal policy, monetary policy and labour policy. Graduates will be able to do a prognosis and analysis of the South African economy and therefore be able to advise management in the private as well as public sectors. Candidates will also be provided with the necessary statistic, computer and communication skills.
Students who achieved 70% and above in English Home Language (an A or a B), and 80% and above in English First Additional Language (only an A) in the NSC (or equivalent) will be exempted from ALL 124 and therefore do not have to register and pass this module to complete their degrees. Students who achieved 69% and below in English Home Language (a C and below), and 79% and below in English First Additional Language (a B and below) have to register for ALL 124 and pass this module in order to be awarded their degrees.
Students who achieved 70% for English at Cambridge A level or AS level will be exempted from ALL 124.
Important information for all prospective students for 2022
Transferring students
A transferring student is a student who, at the time of application for a degree programme at the University of Pretoria (UP) –
A transferring student will be considered for admission based on
Note: Students who have been dismissed at the previous institution due to poor academic performance, will not be considered for admission to UP.
Returning students
A returning student is a student who, at the time of application for a degree programme –
A returning student will be considered for admission based on
Note: Students who have been excluded/dismissed from a faculty due to poor academic performance may be considered for admission to another programme at UP. The Admissions Committee may consider such students if they were not dismissed more than twice. Only ONE transfer between UP faculties will be allowed, and a maximum of two (2) transfers within a faculty.
Important faculty-specific information on undergraduate programmes for 2022
University of Pretoria website: click here
Minimum requirements | ||
Achievement level | ||
English Home Language or English First Additional Language | Mathematics | APS |
NSC/IEB | NSC/IEB | |
5 | 5 | 32 |
General Academic Regulations G1 to G15 apply to a bachelor's degree.
Note: See the alphabetical list of modules for prerequisites of all modules.
# FRK 122 is a terminating module. Candidates will not be able to continue with Financial accounting in the second or third year.
Specialisation modules: EKN 310, 320, 315, 325.
"Major subject"
To be considered a "major subject" the equivalent of four 14-week modules, including two at 300-level, must be passed provided that:
It is thus the responsibility of students to ensure before registration, that their curricula comply with all the requirements of the applicable regulations.
According to General Academic Regulation G3 students have to comply with certain requirements as set by the Faculty Board.
Application of amended programme regulations
Refer to General Academic Regulation G5.
Minimum credits: 137
Students who did not obtain at least a symbol 5 (60-69%) in Mathematics in the final NSC (or equivalent) must first pass Statistics 113 and 123. STK 110 will be credited but students still need to pass STK 120 or equivalent.
Module content:
Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.
Module content:
Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.
Module content:
This module is intended to equip students with the competence in reading and writing required in the four high impact modules: Business Management, Financial Accounting, Statistics and Economics. Students will also be equipped to interpret and draw figures and graphs and to do computations and manage relevant formulas. Students attend two lectures per week during semester two.
This module is offered by the Faculty of Humanities.
Module content:
This module deals with the core principles of economics. A distinction between macroeconomics and microeconomics is made. A discussion of the market system and circular flow of goods, services and money is followed by a section dealing with microeconomic principles, including demand and supply analysis, consumer behaviour and utility maximisation, production and the costs thereof, and the different market models and firm behaviour. Labour market institutions and issues, wage determination, as well as income inequality and poverty are also addressed. A section of money, banking, interest rates and monetary policy concludes the course.
Module content:
This module deals with the core principles of economics, especially macroeconomic measurement the private and public sectors of the South African economy receive attention, while basic macroeconomic relationships and the measurement of domestic output and national income are discussed. Aggregate demand and supply analysis stands core to this course which is also used to introduce students to the analysis of economic growth, unemployment and inflation. The microeconomics of government is addressed in a separate section, followed by a section on international economics, focusing on international trade, exchange rates and the balance of payments. The economics of developing countries and South Africa in the global economy conclude the course.
Module content:
The nature and function of accounting; the development of accounting; financial position; financial result; the recording process; processing of accounting data; treatment of VAT; elementary income statement and balance sheet; flow of documents; accounting systems; introduction to internal control and internal control measures; bank reconciliations; control accounts; adjustments; financial statements of a sole proprietorship; the accounting framework.
Module content:
Budgeting, payroll accounting, taxation – income tax and an introduction to other types of taxes, credit and the new Credit Act, insurance, accounting for inventories (focus on inventory and the accounting entries, not calculations), interpretation of financial statements.
Module content:
The entrepreneurial mind-set; managers and managing; values, attitudes, emotions, and culture: the manager as a person; ethics and social responsibility; decision making; leadership and responsible leadership; effective groups and teams; managing organizational structure and culture inclusive of the different functions of a generic organisation and how they interact (marketing; finance; operations; human resources and general management); contextualising Sustainable Development Goals (SDG) in each of the topics.
Module content:
Value chain management: functional strategies for competitive advantage; human resource management; managing diverse employees in a multicultural environment; motivation and performance; using advanced information technology to increase performance; production and operations management; financial management; corporate entrepreneurship.
Module content:
Inferential concepts. Experimental and observational data. Measures of association, uncertainty and goodness of fit. Sampling error and accuracy of estimation. Introduction to linear regression, reduction of variation due to regression. Conditional distributions of residuals. Simulation based inference: conditional means and prediction intervals. Bivariate data visualisation. Supporting mathematical concepts. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.
This module is also presented as a summer school for students who initially elected and passed STK 120 with a final mark of at least 60% and then decides to further their studies in statistics as well as for students who achieved a final mark of between 40% - 49% in STC 122 during semester 2.
Module content:
Descriptive statistics:
Sampling and the collection of data; frequency distributions and graphical representations. Descriptive measures of location and dispersion.
Probability and inference:
Introductory probability theory and theoretical distributions. Sampling distributions. Estimation theory and hypothesis testing of sampling averages and proportions (one and two-sample cases). Supporting mathematical concepts. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.
Module content:
*Students will not be credited for more than one of the following modules for their degree: WTW 134, WTW 165, WTW 114, WTW 158. WTW 134 does not lead to admission to Mathematics at 200 level and is intended for students who require Mathematics at 100 level only. WTW 134 is offered as WTW 165 in the second semester only to students who have applied in the first semester of the current year for the approximately 65 MBChB, or the 5-6 BChD places becoming available in the second semester and who were therefore enrolled for MGW 112 in the first semester of the current year.
Functions, derivatives, interpretation of the derivative, rules of differentiation, applications of differentiation, integration, interpretation of the definite integral, applications of integration. Matrices, solutions of systems of equations. All topics are studied in the context of applications.
Module content:
*Students will not be credited for more than one of the following modules for their degree:
WTW 124, WTW 146 and WTW 164. The module WTW 146 is designed for students who require Mathematics at 100 level only and does not lead to admission to Mathematics at 200 level.
Vector algebra, lines and planes, matrix algebra, solution of systems of equations, determinants. Complex numbers and polynomial equations. All topics are studied in the context of applications.
Module content:
*Students will not be credited for more than one of the following modules for their degree:
WTW 124, WTW 148 and WTW 164. The module WTW 148 is designed for students who require Mathematics at 100 level only and does not lead to admission to Mathematics at 200 level.
Integration techniques. Modelling with differential equations. Functions of several variables, partial derivatives, optimisation. Numerical techniques. All topics are studied in the context of applications.
Minimum credits: 151
Module content:
In this module students are equipped with an understanding of the moral issues influencing human agency in economic and political contexts. In particular philosophy equips students with analytical reasoning skills necessary to understand and solve complex moral problems related to economic and political decision making. We demonstrate to students how the most important questions concerning the socio-economic aspects of our lives can be broken down and illuminated through reasoned debate. Examples of themes which may be covered in the module include justice and the common good, a moral consideration of the nature and role of economic markets on society, issues concerning justice and equality, and dilemmas of loyalty. The works of philosophers covered may for instance include that of Aristotle, Locke, Bentham, Mill, Kant, Rawls, Friedman, Nozick, Bernstein, Dworkin, Sandel, Walzer, MacIntyre, Bujo, Wiredu, and Gyekye.
Module content:
Basic principles of law of contract. Law of sales, credit agreements, lease.
Module content:
Labour law. Aspects of security law. Law of insolvency. Entrepreneurial law; company law, law concerning close corporations. Law of partnerships.
Module content:
Macroeconomics
From Wall and Bay Street to Diagonal Street: a thorough understanding of the mechanisms and theories explaining the workings of the economy is essential. Macroeconomic insight is provided on the real market, the money market, two market equilibrium, monetarism, growth theory, cyclical analysis, inflation, Keynesian general equilibrium analysis and fiscal and monetary policy issues.
Module content:
Microeconomics
Microeconomic insight is provided into: consumer and producer theory, general microeconomic equilibrium, Pareto-optimality and optimality of the price mechanism, welfare economics, market forms and the production structure of South Africa. Statistic and econometric analysis of microeconomic issues.
Module content:
Macroeconomics
Application of the principles learned in EKN 214 on the world we live in. We look at international markets and dynamic macroeconomic models, and familiarise the students with the current macroeconomic policy debates. We also take a look at the latest macroeconomic research in the world. The course includes topics of the mathematical and econometric analysis of macroeconomic issues.
Module content:
Microeconomics
From general equilibrium and economic welfare to uncertainty and asymmetric information. In this module we apply the principles learned in EKN 224 on the world around us by looking at the microeconomic principles of labour and capital markets, as well as reasons why the free market system could fail. We touch on the government’s role in market failures. The course includes topics of the mathematical and econometric analysis of microeconomic issues.
Module content:
*Module content will be adapted in accordance with the appropriate degree programme. Only one of KOB 281– 284 may be taken as a module where necessary for a programme.
Applied business communication skills
Acquiring basic business communication skills will enhance the capabilities of employees, managers and leaders in the business environment. An overview of applied skills on the intrapersonal, dyadic, interpersonal, group (team), organisational, public and mass communication contexts is provided. The practical part of the module (for example, the writing of business reports and presentation skills) concentrates on the performance dimensions of these skills as applied to particular professions.
Module content:
Statistical problem solving. Causality, experimental and observational data. Probability theory. Multivariate random variables. Discrete and continuous probability distributions. Stochastic representations. Measures of association. Expected values and conditional expectation. Simulation techniques. Supporting mathematical concepts. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.
Module content:
Multivariate probability distributions. Sampling distributions and the central limit theorem. Frequentist and Bayesian inference. Statistical learning and decision theory. Simulation techniques enhancing statistical thinking. Supervised learning: linear regression, estimation and inference. Non-parametric modelling. Supporting mathematical concepts. Statistical algorithms. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.
Minimum credits: 130
Module content:
Public finance
Role of government in the economy. Welfare economics and theory of optimality. Ways of correcting market failures. Government expenditure theories, models and programmes. Government revenue. Models on taxation, effects of taxation on the economy. Assessment of taxation from an optimality and efficiency point of view. South African perspective on public finance.
Module content:
Poverty and inequality are among the greatest contemporary challenges of economic development in the World. This course provides an overview of different economic explanations of underdevelopment and policy options to fostering household and individual welfare. We will investigate key development issues such as poverty, inequality, migration, the role of institutions (policy and governance), among others, as they are encountered by developing countries in general and South Africa in particular. During the course, we put special emphasis on the interplay between theory and data.
Module content:
Economic analyses
Identification, collection and interpretation process of relevant economic data; the national accounts (i.e. income and production accounts, the national financial account, the balance of payments and input-output tables); economic growth; inflation; employment, unemployment, wages, productivity and income distribution; business cycles; financial indicators; fiscal indicators; social indicators; international comparisons; relationships between economic time series - regression analysis; long-term future studies and scenario analysis; overall assessment of the South African economy from 1994 onwards.
Module content:
Economic policy and development: Capita select
The course provides an introduction to growth economics and also to some topics on development economics. Firstly, historical evidence is covered and then the canonical Solow growth model and some of its empirical applications (human capital and convergence). Secondly, the new growth theory (the AK and the Romer models of endogenous growth) are covered. Some of the development topics to be covered include technology transfer, social infrastructure and natural resources.
Module content:
Supervised learning. Linear and non-linear regression. Ordinary least squares and maximum likelihood estimation. Violations of the assumptions, residual analysis. Cross validation. Statistical inference. Bootstrap inference. Supporting mathematical concepts. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.
Module content:
Stationary and non-stationary univariate time series. Properties of ARIMA processes. Identification, estimation and diagnostic testing of a time series models. Forecasting. Multivariate time series. Supervised learning: introduction to generalised linear models. Modelling of binary response variables, logistic regression. Supporting mathematical concepts. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.
Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App