Code | Faculty | Department |
---|---|---|
12240022 | Faculty of Engineering, Built Environment and Information Technology | Department: Chemical Engineering |
Credits | Duration | NQF level |
---|---|---|
Minimum duration of study: 1 year | Total credits: 128 | NQF level: 08 |
Refer also to G16-G29.
The curriculum is determined in consultation with the relevant heads of departments. A student is required to pass modules to the value of at least 128 credits.
The degree is awarded on the basis of examinations only.
A limited number of appropriate modules from other departments and from other divisions of Chemical Engineering are allowed.
Not all modules listed are presented each year. Please consult the departmental postgraduate brochure.
Refer also to G18 and G26.
A student passes with distinction if he or she obtains a weighted average of at least 75% (not rounded) in the first 128 credits for which he or she has registered (excluding modules which were discontinued timeously). The degree is not awarded with distinction if a student fails any one module (excluding modules which were discontinued timeously). The degree must be completed within the prescribed study period.
University of Pretoria Programme Qualification Mix (PQM) verification project
The higher education sector has undergone an extensive alignment to the Higher Education Qualification Sub-Framework (HEQF) across all institutions in South Africa. In order to comply with the HEQSF, all institutions are legally required to participate in a national initiative led by regulatory bodies such as the Department of Higher Education and Training (DHET), the Council on Higher Education (CHE), and the South African Qualifications Authority (SAQA). The University of Pretoria is presently engaged in an ongoing effort to align its qualifications and programmes with the HEQSF criteria. Current and prospective students should take note that changes to UP qualification and programme names, may occur as a result of the HEQSF initiative. Students are advised to contact their faculties if they have any questions.
Minimum credits: 128
Module content:
Description of industrial biotechnology in a process engineering environment. Focus on specific applications in the mining, agricultural, paper and pulp, medical, pharmaceutical, veterinary, brewing and food industries. Principles including implications of bio-prospecting, bio-safety, inoculum production, aseptic growth, quality control and product formulation as applicable to bio-processes. Fermentation with various microbial groups, bio-leaching, gene transfer, solid-substrate fermentation, enzymatic catalysis and immunology. Bioreactors, batch and continuous processing. Bio-remediation.
Module content:
A self-study module, intended for students who will be pursuing a Master’s degree after completing the required Honours-modules. The content is discussed with the candidate by the research supervisor and will focus on a detailed literature study aimed towards preparation for the research dissertation or, in some cases, a specific selected topic.
Registration for this module is approved by the Head of Department.
Module content:
Introduction to nanotechnology, industrial production of nanomaterials, physico-chemical properties of nanomaterials, identification of nanomaterials sources (point vs diffuse sources) to aquatic systems. Fate, behaviour and transport of nanomaterials in different environmental media (freshwater, sediments, wastewater, and soil). Fractal theory and transformation pathways of nanomaterials: chemical, biological, physical and interactions with macromolecules transformations. Nanoecotoxicology: concept of toxicity within nanomaterials regime, nanomaterials toxicity tests (acute vs. chronic toxicity), mechanisms of nanomaterials toxicity, biocompatibility of nanomaterials, bioaccumulation and persistence. Risk assessment paradigm: Hazard identification (production volumes, material flows, nanowastes generation, bioaccumulation, long-range transport, and persistence), hazard characterization (in vitro vs. in vivo studies, adverse outcome pathways), exposure assessment (life cycle assessment and environmental uptake), risk assessment, and risk management (regulation, nanowastes and by-products management protocols). Sustainable nanotechnology paradigm: safe-by-design concept, risk modelling and predictions.
Module content:
In depth understanding of the important metabolic pathways in microorganisms, black box models for describing stoichiometry of bioreactions, metabolic flux analysis as the basis for metabolic (genetic) engineering, kinetics of microbial conversions and basic bioreactor design.
Module content:
Design, construction and testing of experimental setup. Initial test experiments, calibrations and modifications. Preliminary results. Experimental plan and schedule for the research dissertation. Detailed predictions on anticipated measurements. Directly relevant literature (core essentials taken from CIR 702).
Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App