Code | Faculty | Department |
---|---|---|
02133396 | Faculty of Natural and Agricultural Sciences | Department: Physiology |
Credits | Duration | NQF level |
---|---|---|
Minimum duration of study: 3 jaar | Totale krediete: 428 | NQF level: 07 |
Important information for all prospective students for 2024
The admission requirements below apply to all who apply for admission to the University of Pretoria with a National Senior Certificate (NSC) and Independent Examination Board (IEB) qualifications. Click here for this Faculty Brochure.
Minimum requirements | |||
Achievement level | |||
English Home Language or English First Additional Language | Mathematics | Physical Sciences | APS |
NSC/IEB | NSC/IEB | NSC/IEB | |
5 | 5 | 5 | 32 |
Life Orientation is excluded when calculating the APS.
Applicants currently in Grade 12 must apply with their final Grade 11 (or equivalent) results.
Applicants who have completed Grade 12 must apply with their final NSC or equivalent qualification results.
Please note that meeting the minimum academic requirements does not guarantee admission.
Successful candidates will be notified once admitted or conditionally admitted.
Unsuccessful candidates will be notified after 30 June.
Applicants should check their application status regularly on the UP Student Portal at click here.
Applicants with qualifications other than the abovementioned should refer to the Brochure: Undergraduate Programme Information 2024: Qualifications other than the NSC and IEB, available at click here.
International students: Click here.
Transferring students
A transferring student is a student who, at the time of applying at the University of Pretoria (UP) is/was a registered student at another tertiary institution. A transferring student will be considered for admission based on NSC or equivalent qualification and previous academic performance. Students who have been dismissed from other institutions due to poor academic performance will not be considered for admission to UP.
Closing dates: Same as above.
Returning students
A returning student is a student who, at the time of application for a degree programme is/was a registered student at UP, and wants to transfer to another degree at UP. A returning student will be considered for admission based on NSC or equivalent qualification and previous academic performance.
Note:
Closing date for applications from returning students
Unless capacity allows for an extension of the closing date, applications from returning students must be submitted before the end of August via your UP Student Centre.
Candidates who do not comply with the minimum admission requirements for BSc (Human Physiology, Genetics and Psychology), may be considered for admission to the BSc – Extended programme – Biological and Agricultural Sciences, which requires an additional year of study.
BSc – Extended Programme – Biological and Agricultural Sciences Minimum requirements | |||
Achievement level | |||
English Home Language or English First Additional Language | Mathematics | Physical Sciences | APS |
NSC/IEB | NSC/IEB | NSC/IEB | |
4 | 4 | 4 | 26 |
Note:
*The BSc – Extended programmes are not available for students who meet all the requirements for the corresponding mainstream programme.
*Please note that only students who apply in their final NSC or equivalent qualification year will be considered for admission into any of the BSc – Extended programmes. Students who are upgrading or taking a gap year will not be considered.
* BSc Extended programmes are selection programmes. Additional selection criteria apply.
1.1 Requirements for specific modules
A candidate who:
or
or
1.2 Fundamental modules
A student will be promoted to the following year of study if he or she passed 100 credits of the prescribed credits for a year of study, unless the Dean on the recommendation of the relevant head of department decides otherwise. A student who does not comply with the requirements for promotion to the following year of study, retains the credit for the modules already passed and may be admitted by the Dean, on recommendation of the relevant head of department, to modules of the following year of study to a maximum of 48 credits, provided that it will fit in with both the lecture and examination timetable.
General promotion requirements in the faculty
All students whose academic progress is not acceptable can be suspended from further studies.
Minimum krediete: 142
Core modules = 128
Fundamental modules = 14
Additional information:
Please note: ANA modules can only be taken by BSc (Medical Science) students.
Module-inhoud:
Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.
Module-inhoud:
Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.
Module-inhoud:
The module aims to equip students with the ability to cope with the reading and writing demands of scientific disciplines.
Module-inhoud:
Simple statistical analysis: Data collection and analysis: Samples, tabulation, graphical representation, describing location, spread and skewness. Introductory probability and distribution theory. Sampling distributions and the central limit theorem. Statistical inference: Basic principles, estimation and testing in the one- and two-sample cases (parametric and non-parametric). Introduction to experimental design. One- and twoway designs, randomised blocks. Multiple statistical analysis: Bivariate data sets: Curve fitting (linear and non-linear), growth curves. Statistical inference in the simple regression case. Categorical analysis: Testing goodness of fit and contingency tables. Multiple regression and correlation: Fitting and testing of models. Residual analysis. Computer literacy: Use of computer packages in data analysis and report writing.
Module-inhoud:
General introduction to inorganic, analytical and physical chemistry. Atomic structure and periodicity. Molecular structure and chemical bonding using the VSEPR-model. Nomenclature of inorganic ions and compounds. Classification of reactions: precipitation, acid-base, redox reactions and gas-forming reactions. Mole concept and stoichiometric calculations concerning chemical formulas and chemical reactions. Principles of reactivity: energy and chemical reactions. Physical behaviour gases, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to chemical kinetics.
Module-inhoud:
Theory: General physical-analytical chemistry: Chemical equilibrium, acids and bases, buffers, solubility equilibrium, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and aminoacids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.
Module-inhoud:
Chromosomes and cell division. Principles of Mendelian inheritance: locus and alleles, dominance interactions, extensions and modifications of basic principles.. Probability studies. Sex determination and sex linked traits. Pedigree analysis. Genetic linkage and chromosome mapping. Chromosome variation.
Module-inhoud:
Introduction to the molecular structure and function of the cell. Basic chemistry of the cell. Structure and composition of prokaryotic and eukaryotic cells. Ultrastructure and function of cellular organelles, membranes and the cytoskeleton. General principles of energy, enzymes and cell metabolism. Selected processes, e.g. glycolysis, respiration and/or photosynthesis. Introduction to molecular genetics: DNA structure and replication, transcription, translation. Cell growth and cell division.
Module-inhoud:
Note: PHY 131 is aimed at students who will not continue with physics. PHY 131 cannot be used as a substitute for PHY 114.
Units, vectors, one dimensional kinematics, dynamics, work, equilibrium, sound, liquids, heat, thermodynamic processes, electric potential and capacitance, direct current and alternating current, optics, modern physics, radioactivity.
Module-inhoud:
This module is a general orientation to Psychology. An introduction is given to various theoretical approaches in Psychology, and the development of Psychology as a science is discussed. Selected themes from everyday life are explored and integrated with psychological principles. This module focuses on major personality theories. An introduction is given to various paradigmatic approaches in Psychology.
Module-inhoud:
This module introduces the student to a basic knowledge and understanding of the biological basis of human behaviour. The module addresses the key concepts and terminology related to the biological subsystem, the rules and principles guiding biological psychology, and identification of the interrelatedness of different biological systems and subsystems. In this module various cognitive processes are studied, including perception, memory, thinking, intelligence and creativity. Illustrations are given of various thinking processes, such as problem solving, critical, analytic and integrative thinking.
Module-inhoud:
*Students will not be credited for more than one of the following modules for their degree: WTW 134, WTW 165, WTW 114, WTW 158. WTW 134 does not lead to admission to Mathematics at 200 level and is intended for students who require Mathematics at 100 level only. WTW 134 is offered as WTW 165 in the second semester only to students who have applied in the first semester of the current year for the approximately 65 MBChB, or the 5-6 BChD places becoming available in the second semester and who were therefore enrolled for MGW 112 in the first semester of the current year.
Functions, derivatives, interpretation of the derivative, rules of differentiation, applications of differentiation, integration, interpretation of the definite integral, applications of integration. Matrices, solutions of systems of equations. All topics are studied in the context of applications.
Minimum krediete: 148
Core modules = 148
Module-inhoud:
Structural and ionic properties of amino acids. Peptides, the peptide bond, primary, secondary, tertiary and quaternary structure of proteins. Interactions that stabilise protein structure, denaturation and renaturation of proteins. Introduction to methods for the purification of proteins, amino acid composition, and sequence determinations. Enzyme kinetics and enzyme inhibition. Allosteric enzymes, regulation of enzyme activity, active centres and mechanisms of enzyme catalysis. Examples of industrial applications of enzymes and in clinical pathology as biomarkers of diseases. Online activities include introduction to practical laboratory techniques and Good Laboratory Practice; techniques for the quantitative and qualitative analysis of biological molecules; enzyme activity measurements; processing and presentation of scientific data.
Module-inhoud:
Carbohydrate structure and function. Blood glucose measurement in the diagnosis and treatment of diabetes. Bioenergetics and biochemical reaction types. Glycolysis, gluconeogenesis, glycogen metabolism, pentose phosphate pathway, citric acid cycle and electron transport. Total ATP yield from the complete oxidation of glucose. A comparison of cellular respiration and photosynthesis. Online activities include techniques for the study and analysis of metabolic pathways and enzymes; PO ratio of mitochondria, electrophoresis, extraction, solubility and gel permeation techniques; scientific method and design.
Module-inhoud:
Chemical foundations. Weak interactions in aqueous systems. Ionisation of water, weak acids and weak bases. Buffering against pH changes in biological systems. Water as a reactant and function of water. Carbohydrate structure and function. Biochemistry of lipids and membrane structure. Nucleotides and nucleic acids. Other functions of nucleotides: energy carriers, components of enzyme cofactors and chemical messengers. Introduction to metabolism. Bioenergetics and biochemical reaction types. Online activities include introduction to laboratory safety and Good Laboratory Practice; basic biochemical calculations; experimental method design and scientific controls, processing and presentation of scientific data.
Module-inhoud:
Orientation in physiology, homeostasis, cells and tissue, muscle and neurophysiology, cerebrospinal fluid and the special senses.
Practical work: Practical exercises to complement the theory.
Module-inhoud:
Body fluids; haematology; cardiovascular physiology and the lymphatic system. Practical work: Practical exercises to complement the theory.
Module-inhoud:
Structure, gas exchange and non-respiratory functions of the lungs; structure, excretory and non-urinary functions of the kidneys, acid-base balance, as well as the skin and body temperature control.
Practical work: Practical exercises to complement the theory.
Module-inhoud:
Nutrition, digestion and metabolism; hormonal control of the body functions and the reproductive systems. Practical work: Practical exercises to complement the theory.
Module-inhoud:
The chemical nature of DNA. The processes of DNA replication, transcription, RNA processing, translation. Control of gene expression in prokaryotes and eukaryotes. Recombinant DNA technology and its applications in gene analysis and manipulation.
Module-inhoud:
Chromosome structure and transposable elements. Mutation and DNA repair. Genomics and proteomics. Organelle genomes. Introduction to genetic analysis of populations: allele and genotypic frequencies, Hardy Weinberg Law, its extensions and implications for different mating systems. Introduction to quantitative and evolutionary genetics.
Module-inhoud:
In this module human development from conception through adolescence to adulthood is discussed with reference to various psychological theories. Incorporated are the developmental changes related to cognitive, physical, emotional and social functioning of the individual and the context of work in adulthood. Traditional and contemporary theories of human development explaining and describing these stages are studied in order to address the key issues related to both childhood and adulthood.
Module-inhoud:
This module is a social-psychological perspective on interpersonal and group processes. Themes that are covered include communication, pro-social behaviour, social influence and persuasion, political transformation, violence, and group behaviour.
Minimum krediete: 138
Core modules = 138
Additional information:
Module-inhoud:
Overview of higher cognitive functions and the relations between psyche, brain and the immune system. Practical work: Applied practical work with specific examples drawn from South African case studies taught within the framework of the UN Sustainable Development Goal 3 (Good Health and Well-being).
Module-inhoud:
Mechanisms of muscle contraction and energy sources. Cardio-respiratory changes, thermo-regulation and other adjustments during exercise. Use and misuse of substances to improve performance. Practical work: Applied practical work with exercise descriptions for the South African context taught within the framework of the UN Sustainable Development Goal 3 (Good Health and Well-being).
Module-inhoud:
Integration of all the human physiological systems. Practical work: Applied practical work.
Module-inhoud:
Regulation of gene expression in eukaryotes: regulation at the genome, transcription, RNA processing and translation levels. DNA elements and protein factors involved in gene control. The role of chromatin structure and epigenetic changes. Technology and experimental approaches used in studying eukaryotic gene control. Applications of the principles of gene control in eg cell signaling pathways, development cancer and other diseases in humans.
Module-inhoud:
A unifying framework for biology. Mechanisms involved in the evolution of genes, genomes and species. Comparative genomics across the kingdoms of life. Phylogenetic inference. Applications of phylogenetics and evolutionary genomics research, including relevance to sustainable development goals for food security, good health and the biosphere.
Module-inhoud:
Application of modern genetics to human variability, health and disease. Molecular origin of Mendelian and multifactorial diseases. The use of polymorphisms, gene mapping, linkage and association studies in medical genetics. Genetic diagnosis: application of cytogenetic, molecular and genomic techniques. Congenital abnormalities, risk assessment and genetic consultation. Prenatal testing, population screening, treatment of genetic diseases and gene-based therapy. Pharmacogenetics and cancer genetics. Ethical aspects in medical genetics.
Module-inhoud:
Identification of abnormal behaviour in children based on knowledge of normal childhood development; introduction to the study of various models pertaining to abnormal behaviour; understanding and application of basic concepts in child psychopathology. This module also provides an introduction to psychopathology and symptomatology of adult abnormal behaviour. Terminology, definitions of abnormal behaviour, problems in diagnosis, labelling, and myths regarding abnormal behaviour are discussed. Neurosis as a specific mental disorder is studied critically from a multidimensional perspective, including intrapsychic, interpersonal and social-cultural explanations.
Module-inhoud:
Processes that affect genetic evolution: mutation, drift, natural selection and recombination. Fisher-Wright and coalescence models. Groupings of genes: linkage, inbreeding, population structure and gene flow. Neutral and nearly neutral theory. Quantitative genetics and the phenotype. Optimality. Adaptation. Levels of selection in sex ratios and conflict. Reproductive value and life history. Relatedness and kin selection. Sexual reproduction and selection. Genomic complexity and neutrality.
Module-inhoud:
The module introduces methods of inquiry in the social sciences and humanities. The purpose of this module is to introduce students to the research process in order to equip them with the necessary competence to:
identify social problems, formulate research questions and hypotheses;
have a basic understanding of writing the literature review and research proposal;
know and select relevant methods of inquiry;
be aware of the necessity of conducting ethically sound research; and
interpret and present data graphically.
Module-inhoud:
This module deals with a community psychological perspective on human behaviour and psychological interventions and also critically explores the contribution of various perspectives in psychology. The module focuses on themes such as definitions of key concepts, principles and aims of community psychology, and the role of the community psychologist as well as the impact of earlier thought frameworks on contemporary perspectives. The implications of these ideas for practical initiatives focused on mental health in communities, are discussed. The module further focuses on critical psychology. Critical psychology is an orientation towards psychology that is critical towards the assumptions and practices of psychology as it is practiced in the mainstream. It attempts to address power issues as they manifest in the practice of mainstream psychology. The focus is on examining how the practice and theories of mainstream psychology contribute to these power issues impacting on marginalised groups.
Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App