Code | Faculty | Department |
---|---|---|
12130001 | Faculty of Engineering, Built Environment and Information Technology | Department: Industrial and Systems Engineering |
Credits | Duration | NQF level |
---|---|---|
Minimum duration of study: 4 years | Total credits: 595 | NQF level: 08 |
All fields of study of the BEng degree have been accredited by the Engineering Council of South Africa (ECSA), and comply with the academic requirements for registration as a professional engineer. The programmes are designed in accordance with the outcomes-based model as required by the South African Qualifications Authority (SAQA). The learning outcomes and contents of the programmes have been compiled in accordance with the latest accreditation standards (PE-60 and PE-61) of ECSA, which also comply with the SAQA requirements, and which are summarised as follows:
Learning outcomes of the BEng degree:
A graduate in engineering should be able to apply the following skills on an advanced level:
Learning contents of the BEng programmes:
Six essential knowledge areas are included in the syllabi of the programmes. The typical representation of each knowledge area as a percentage of the total contents of an undergraduate programme is given in brackets ( ) in the list below. This percentage varies for the different study directions, but conforms in all instances to the minimum knowledge area content as stipulated by ECSA.
Knowledge areas:
Important information for all prospective students for 2025
The admission requirements below apply to all who apply for admission to the University of Pretoria with a National Senior Certificate (NSC) and Independent Examination Board (IEB) qualifications. Click here for this Faculty Brochure.
Minimum requirements: 4-year programme | |||
Achievement level | |||
English Home Language or English First Additional Language | Mathematics | Physical Sciences | APS |
NSC/IEB | NSC/IEB | NSC/IEB | |
5 | 6 | 6 | 35 |
The suggested second-choice programmes for the Bachelor in Engineering in Industrial Engineering are Bachelor of Science Chemistry, Bachelor of Science Mathematics and Bachelor of Science Physics.
***************************************************************************************************************
Minimum requirements: 5-year programme [previously called ENGAGE] | |||
Achievement level | |||
English Home Language or English First Additional Language | Mathematics | Physical Sciences | APS |
NSC/IEB | NSC/IEB | NSC/IEB | |
5 | 65% | 65% | 33 |
Students may apply directly to be considered for the 5-year Bachelor of Engineering programme..
Life Orientation is excluded when calculating the APS.
Applicants currently in Grade 12 must apply with their final Grade 11 (or equivalent) results.
Applicants who have completed Grade 12 must apply with their final NSC or equivalent qualification results.
Please note that meeting the minimum academic requirements does not guarantee admission.
Successful candidates will be notified once admitted or conditionally admitted.
Unsuccessful candidates will be notified after 30 June.
Applicants should check their application status regularly on the UP Student Portal at click here.
Applicants with qualifications other than the abovementioned should refer to the International undergraduate prospectus 2025: Applicants with a school leaving certificate not issued by Umalusi (South Africa), available at click here.
International students: Click here.
Transferring students
A transferring student is a student who, at the time of applying at the University of Pretoria (UP) is/was a registered student at another tertiary institution. A transferring student will be considered for admission based on NSC or equivalent qualification and previous academic performance. Students who have been dismissed from other institutions due to poor academic performance will not be considered for admission to UP.
Closing dates: Same as above.
Returning students
A returning student is a student who, at the time of application for a degree programme is/was a registered student at UP, and wants to transfer to another degree at UP. A returning student will be considered for admission based on NSC or equivalent qualification and previous academic performance.
Note:
Closing date for applications from returning students
Unless capacity allows for an extension of the closing date, applications from returning students must be submitted before the end of August via your UP Student Centre.
With a few exceptions, most modules offered at the School of Engineering are semester modules having credit values of either 8 or 16.
A student may be permitted by the Dean, on recommendation of the relevant head of department, to register for an equivalent module in an alternate semester, although the module is normally offered to the student’s group in another semester, and providing that no timetable clashes occur.
Please note:
Promotion to the second semester of the first year and to the second year of study
Please note:
Promotion to the third year of study of the Four-year Programme, as well as to the third and the fourth years of study of the ENGAGE Programme. In case of the fourth year of study of the ENGAGE Programme, the words "first", "second" and "third" must be substituted with the words "second", "third" and "fourth" respectively.
Promotion to the fourth year of study of the Four-year Programme, as well as to the fifth year of study of the ENGAGE Programme. In case of the fifth year of study of the ENGAGE Programme, the words "second", "third" and "fourth" must be substituted with the words "third", "fourth" and "fifth" respectively.
Minimum credits: 145
Module content:
General introduction to inorganic, analytical and physical chemistry. Nomenclature of inorganic ions and compounds, stoichiometric calculations concerning chemical reactions, redox reactions, solubilities and solutions, atomic structure, periodicity. Molecular structure and chemical bonding using the VSEPR model. Principles of reactivity, electrochemistry, energy and chemical reactions, entropy and free energy.
Appropriate tutorial classes and practicals.
Module content:
The general objective of this module is to develop expertise in solving electric and electronic circuits. The topics covered in the course are Ohm's law, Kirchoff's current and voltage laws, voltage and current division, mesh current and node voltage methods, linearity, Thevenin and Norton equivalent circuits, source transformation, power transfer, energy storage elements in circuits (inductors and capacitors), and operational amplifiers and applications. Although circuits will mostly be solved using direct current (DC) sources, the final part of the course will consider methods to solve circuits using alternating current sources (AC).
Module content:
Introductory mathematics: Symbols, exponents, logarithms, angles in degrees, radial measure, goniometry, differentiation, and integration. Motion along a straight line: position and displacement, acceleration. Vectors: adding vectors, components, multiplying vectors. Motion in two and three dimensions: projectile motion, circular motion. Force and motion: Newton’s Law, force, friction. Kinetic energy and work: work, power. Potential energy: Centre of mass, linear momentum. Collisions: impulse and linear momentum, elastic collisions, inelastic collisions. Rotation: kinetic energy of rotation, torque. Oscillations and waves: Simple harmonic motion, types of waves, wavelength and frequency, interference of waves, standing waves, the Doppler effect. Temperature, heat and the first law of thermodynamics.
Module content:
Introduction to fundamentals of engineering, professional development of engineers and sustainability practices. This module is intended to introduce students engineering, sustainability, design, technical communication and academic writing, as well as other engineering professional practices and skill sets necessary for your future employability. Technical communication in most cases can be broken down into writing, technical argument, and explanation, data visualisation as well as presentations. Specific components will include (but are not limited to) the following: an introduction to your chosen engineering discipline, ethics and sustainability, industry standards and professional conduct, teamworking, leadership, project management, career preparation and employability.
Module content:
Introduction to fundamentals of engineering, professional development of engineers and sustainability practices. This module is intended to further expose students to engineering, sustainability (social, economic and environmental) implications on design as well as appropriate technical communication practices. Specific components will include (but are not limited to) the following: an introduction to your chosen engineering discipline, the design process, critical, creative and entrepreneurial thinking, decisionmaking, problem solving, ethics and sustainability, industry standards and professional conduct, teamworking, leadership, project management, career preparation and employability.
Module content:
Freehand sketching covering the following: perspective, isometric and orthographic drawings. Drawing conventions, graphical techniques and assembly drawings. Evaluation of drawings and error detection. True lengths of lines, projections and intersections. Practical applications of these techniques. Introduction to computer-aided drawings, including dimensioning, crosshatching and detailing. Introduction to basic manufacturing processes including primary (casting, forging and extrusion) and secondary (drilling, turning, milling, grinding, broaching and sawing) manufacturing procedures.
Module content:
Introduction to materials: the family of materials, atomic structure and types of bonding, crystal types and space arrangement of atoms, directions and planes in crystals, defects in crystals, diffusion in solids. Mechanical properties of materials: stress and strain, mechanical testing (strength, ductility, hardness, toughness, fatigue, creep), plastic deformation, solid-solution hardening, recrystallisation.
Polymeric materials: polymerisation and industrial methods, types of polymeric materials and their properties. Corrosion of metals: mechanisms and types of corrosion, corrosion rates, corrosion control. The heat treatment of steel: Fe-C phase diagram, equilibrium cooling, hardening and tempering of steel, stainless steel. Composite materials: Introduction, fibre reinforced polymeric composites, concrete, asphalt, wood.
Module content:
Equivalent force systems, resultants. Newton's laws, units. Forces acting on particles. Rigid bodies: principle of transmissibility, resultant of parallel forces. Vector moments and scalar moments. Relationship between scalar- and vector moments. Couples. Equivalent force systems on rigid bodies. Resultants of forces on rigid bodies. Equilibrium in two and three dimensions. Hooke's law. Trusses and frameworks. Centroids and second moments of area. Beams: distributed forces, shear force, bending moment, method of sections, relationship between load, shear force and bending moment.
Module content:
*This module is designed for first-year engineering students. Students will not be credited for more than one of the following modules for their degree: WTW 158, WTW 114, WTW 134, WTW 165.
Introduction to vector algebra. Functions, limits and continuity. Differential calculus of single variable functions, rate of change, graph sketching, applications. The mean value theorem, the rule of L'Hospital. Indefinite integrals, integration.
Module content:
*This module is designed for first-year engineering students. Students will not be credited for more than one of the following modules for their degree: WTW 146, WTW 148 and WTW 124,
Vector algebra with applications to lines and planes in space, matrix algebra, systems of linear equations, determinants, complex numbers, factorisation of polynomials and conic sections. Integration techniques, improper integrals. The definite integral, fundamental theorem of Calculus. Applications of integration. Elementary power series and Taylor’s theorem. Vector functions, space curves and arc lengths. Quadratic surfaces and multivariable functions.
Module content:
*Attendance module only
The module is offered at the end of the first year of study and lasts at least eight days, during which training is given in the following workshops: electronic projects, panel wiring, electrical motors and switch gear, general machines, welding, turning and sheet metal work. Each student's progress is assessed after each workshop.
Minimum credits: 144
Module content:
Engineering systems are often subjected to variation, uncertainty and incomplete information. Mathematical statistics provides the basis for effectively handling and quantifying the effect of these factors. This module provides an introduction to the concepts of mathematical statistics and will include the following syllabus themes: data analysis, probability theory, stochastic modelling, statistical inference and regression analysis.
Module content:
Communicate effectively, both orally and in writing, with engineering audiences and the community at large. Written communication as evidenced by: uses appropriate structure, use of modern or electronic communication methods; style and language for purpose and audience; uses effective graphical support; applies methods of providing information for use by others involved in engineering activity; meets the requirements of the target audience. Effective oral communication as evidenced by appropriate structure, style and language; appropriate visual materials; delivers fluently; meets the requirements of the intended audience. Audiences range from engineering peers, management and lay persons, using appropriate academic or professional discourse. Typed reports range from short (300-1 000 word plus tables diagrams) to long (10 000-15 000 words plus tables, diagrams, references and appendices), covering material at exit level. Methods of providing information include the conventional methods of the discipline, for example engineering drawings, as well as subject-specific methods.
Module content:
Qualifying and quantifying productivity: efficiency, effectiveness, utilisation, profitability and competitiveness. Method study: critical examination and process flow charts and diagrams. Work measurement: time study and activity sampling. Organisational behaviour: motivation, incentive schemes, group forming, work teams, job design and change management. Ergonomics.
Module content:
The Joint Community Project module is a credit-bearing educational experience where students are not only actively engaging in interpersonal skills development but also participate in service activities in collaboration with community partners. Students are given the opportunity to practice and develop their interpersonal skills formally taught in the module by engaging in teamwork with fellow students from different disciplines and also with non-technical members of the community. The module intends for the student to develop through reflection, understanding of their own experience in a team-based workspace as well as a broader understanding of the application of their discipline knowledge and its potential impact in their communities, in this way also enhancing their sense of civic responsibility. Compulsory class attendance 1 week before Semester 1 classes commence.
Module content:
Conceptual consideration of the phases in mechanical design acknowledging the many feedbacks & iterations. Detailed exposure to machine elements, including fasteners, gears, belts, chains and bearings. Selection of standard mechanical components. Detailed exposure to machining processes used to manufacture components for mechanical machines. Detailed exposure to GD&T (Geometric Dimensioning & Tolerancing) needed for manufacturing drawings.
Module content:
Spreadsheet applications: Formulas and calculations, named ranges, plotting and trend lines, goal seek, linear programming, importing and exporting data, data navigation and filtering. Programming fundamentals: Names and objects, conditional and unconditional looping, branching, functions, modules, packages, reading and writing data files, graphical output (plotting). Solving simple problems using a high level programming language to develop, code and debug programs. Solving complex problems by breaking it down into a number of simple problems using concepts such as functions, modules and available packages. Programming principles are developed through solving mathematics and physics problems.
Module content:
Kinetics of systems of particles, Newton’s 2nd law generalised for a system of particles, rate of change of momentum and angular momentum relations, work-energy relations, conservation laws, steady mass flow. Plane kinematics of rigid bodies, rotation, translation, general 2D motion, relative motion analysis. Moments and products of inertia. Plane kinetics of rigid bodies, equations of motion, rotation, translation, general 2D motion, work-energy relations. Vibration and time response.
Module content:
Application overview. Concepts: system, control mass, control volume, property, state, process, cycles, mass, volume, density, pressure, pure substances, property tables, ideal gases, work and heat, internal energy, enthalpy, specific heat capacity. First law of thermodynamics for control masses and control volumes. Conservation of mass. Processes: isothermal, polytropic, adiabatic, isentropic. Second law of thermodynamics and entropy for control masses and control volumes. Introduction to power cycles . Experimental techniques in thermodynamics.
Module content:
Linear algebra, eigenvalues and eigenvectors with applications to first and second order systems of differential equations. Sequences and series, convergence tests. Power series with applications to ordinary differential equations with variable coefficients. Fourier series with applications to partial differential equations such as potential, heat and wave equations.
Module content:
Theory and solution methods for linear differential equations as well as for systems of linear differential equations. Theory and solution methods for first order non-linear differential equations. The Laplace transform with application to differential equations. Application of differential equations to modelling problems.
Module content:
Calculus of multivariable functions, directional derivatives. Extrema. Multiple integrals, polar, cylindrical and spherical coordinates. Line integrals and the theorem of Green. Surface integrals and the theorems of Gauss and Stokes.
Module content:
Numerical integration. Numerical methods to approximate the solution of non-linear equations, systems of equations (linear and non-linear), differential equations and systems of differential equations. Direct methods to solve linear systems of equations.
Minimum credits: 155
Module content:
Mathematical statistics provides the basis for a number of important applications in the engineering environment. This module provides an introduction to the most important of these applications and will include the following syllabus themes: Monte Carlo simulation, decision analysis, forecasting and data-dependent modelling.
Module content:
This module introduces the principles, approaches, methods, techniques and tools to systematically determine facility requirements, determine the required space of and relationships between activities, develop and evaluate alternative plans and layouts and present the results. Aspects such as facilities location, manufacturing and service process design, capacity planning, materials handling, personnel facilities, storage and warehousing are also addressed. A structured facility design project forms an integral part of the course.
Module content:
Systems development planning, system requirement analysis, different approaches towards structured analysis and design of systems, process design, database design and normalization, object-oriented design and modelling, information system application building and testing.
Module content:
Role of logistics in the economy and organisation. Customer service. Forecasting. Logistics information systems and electronic information flow. Inventory management. Managing materials flow. Distribution channels. Transportation. Warehousing. Packaging. Strategic purchasing. Global logistics. Organising and controlling logistics. Supply chain management. Supply chain finance and performance measurement. SCOR reference models. Implementing logistics strategy.
Module content:
Introduction to operations management, operations strategy and competitiveness. World-class and agile manufacturing. Operations planning in the service industries. The manufacturing management environment. Batching principles (EOQ and DEL). Manufacturing planning and control systems. Sales and operations planning. Capacity planning and control. Demand management. Master production scheduling. Materials requirements planning (MRP). Distribution requirements planning. Just-in-time (JIT) manufacturing. Synchronous manufacturing (Theory of constraints). Comparing MRP, JIT and TOC. Shop-floor scheduling and control. Integration and implementation of manufacturing planning and control systems. Enterprise Resource Planning (ERP) systems. Business process transformation.
Module content:
Introduction to Operations Research, and more specifically the branch of optimisation and its application to industrial problems. In the module the topics of linear and integer linear programming are introduced. The focus is on identifying and scoping appropriate problems, the subsequent formulation of problems, solution algorithms, and post-optimisation sensitivity analysis. Students are exposed to solving problems using optimisation software.
Module content:
*Attendance module only
During or at the end of the second year of study, students in industrial engineering undergo at least six weeks of prescribed practical training in the industry. A satisfactory report on the practical training must be submitted to the Faculty Administration within one week of registration. In exceptional circumstances the prescribed minimum period can be reduced, as approved by the chairman of the School of Engineering.
Module content:
Strategy formulation and analysis (e.g. Porter’s five Forces, Blue Ocean Strategy, Scenario Planning); business model design; service design; financial feasibility; business planning; iterative design and prototyping; operational excellence; entrepreneurship; integration of theory with real world application.
Module content:
The purpose of this module is to develop knowledge and understanding of engineering management principles and economic decision-making so that students can design, manage, evaluate and participate in engineering projects in the workplace. As such elements from engineering economics, project management and systems engineering are combined.
Module content:
Introduction to simulation as technique. Simulation methodology. Formulation of problem situations by means of simulation models with the emphasis on discrete models. Input and output analysis. Introduction to simulation software.
Module content:
*Only for BSc (Mathematical Statistics. Construction Management, Real Estate and Quantity Surveying) and BEng (Industrial Engineering) students.
Purpose and functioning of financial management. Basic financial management concepts. Accounting concepts and the use of the basic accounting equation to describe the financial position of a business. Recording of financial transactions. Relationship between cash and accounting profit. Internal control and the management of cash. Debtors and short-term investments. Stock valuation models. Depreciation. Financial statements of a business. Distinguishing characteristics of the different forms of businesses. Overview of financial markets and the role of financial institutions. Risk and return characteristics of various financial instruments. Issuing ordinary shares and debt instruments.
Module content:
Two exit-level Graduate Attributes (GAs) of ECSA are addressed and each must be passed in the same semester. GA7: Demonstrate critical awareness of the impact of engineering activity on the social, industrial and physical environment. The history of engineering globally and in South Africa. Most important engineering projects globally and in South Africa. The impact of technology on society. Occupational and public health and safety. Occupational Health and Safety Act. Impacts on the physical environment. The personal, social, cultural values and requirements of those affected by engineering activity. The combination of social, workplace (industrial) and physical environmental factors are appropriate to the discipline of the qualification. GA8: Demonstrate competence to work effectively on a small project as an individual, in teams and in multidisciplinary environments. Identifies and focuses on objectives. Works strategically. Executes tasks effectively. Delivers completed work on time. Effective teamwork: Makes individual contribution to team activity; performs critical functions; enhances work of fellow team members; benefits from support of team members; communicates effectively with team members; delivers completed work on time. Multidisciplinary work by the following: Acquires a working knowledge of co-worker’s discipline; uses a systems-engineering approach; communicates across disciplinary boundaries. Report and presentation on team project. Tasks require co-operation across at least one disciplinary boundary. Students acquire a working knowledge of co-worker’s discipline. Students communicate between disciplinary boundaries.
Module content:
Modern manufacturing processes including: Rapid Prototyping and Additive Manufacturing, Processing of integrated circuits, Electronics assembly and packaging, Micro-fabrication technologies and Nanofabrication technologies. Manufacturing technologies including Automated technologies for manufacturing systems, Integrated Manufacturing systems, Process planning and production control as well as Quality control and inspection topics.
Minimum credits: 151
Module content:
The theoretical basis of Labour Relations
In this section the basic concepts, historical context and theoretical approaches to the field of labour relations will be discussed. The institutional framework in which labour relations operates, will be addressed with particular emphasis on the structural mechanisms and institutional processes. The service relationship that forms the basis of labour relations practices, will also be analysed.
Labour Relations practice
In this section students are taught the conceptual and practical skills related to practice aspects such as handling of grievances, disciplining, retrenchments, collective bargaining, industrial action and dispute resolution.
Module content:
Introduction to law. General principles of the law of contract. Specific contracts: purchase contracts; letting and hiring of work; employment contracts. Agency. General aspects of entrepreneurial law.
Module content:
Introduction to quality and quality management systems. Statistical process control. Acceptance control.
Module content:
Money-time relationships and equivalence (interest formulae, effective interest rate, bonds and loans). Bases for comparison of alternatives (present worth, annual worth, Internal rate of return, external rate of return, investment balance diagrams, Decision making among alternatives (useful lives equal to study period, useful lives different among alternatives, mutually exclusive alternatives in terms of combinations of proposals). The influence of inflation on engineering economic calculations. Decision making among alternatives on an after-tax basis. Replacement analysis (the economic life of an asset, retirement without replacement). Risk analysis of cash flows.
Module content:
Review of basic probability, Markov chain models, Markov decision models. Queuing systems: M/M/1 queues (both finite and infinite capacity), etc.; deterministic and stochastic inventory models. Competitive games: pure and mixed strategies, optimum strategy, two-person zero-sum games, graphical methods and applications, LP methods for games. Forecasting: time series problems, different methods of forecasting.
Module content:
Choice of project topic. Appointment of project leader. Literature study, analysis and selection of techniques for project approach.
Module content:
Narrowing of solution choice. Detailed solution development and evaluation of the chosen alternative. Writing of the final project report and presentation of the project using a poster and oral presentation.
Module content:
*Attendance module only
During or at the end of the third year of study, students in industrial engineering undergo at least six weeks of prescribed practical training in the industry. A satisfactory report on the practical training must be submitted to the department within one week of registration. In exceptional circumstances the prescribed minimum period can be reduced, as approved by the chairman of the School of Engineering.
Module content:
The work of management and the need for managerial accounting information. The changing business environment. Cost terms, concepts, and classification. Job order costing. Process costing. Activity-based costing and quality management. Cost-volume-profit relations. Variable and fixed costing. Budgeting and control. Standard costs and flexible budgets. Segment reporting and decentralisation. Relevant costs for decision-making. Pricing products and services.
Module content:
A company's ability to remain competitive hinges increasingly on its ability to develop successful products. In practice this is often determined by how well the company performs systems engineering. Applying the principles of systems engineering allows designers to understand the big picture, i.e. how a product needs to perform technically as well as within its application domain, e.g. environmentally, human interfaces, and so on. This module equips the student with the relevant tools and process understanding to successfully apply systems engineering to product development. Some of these tools and processes include specification practices, requirements engineering, systems engineering management and verification and validation processes.
Module content:
Requirements to maintain continued competence and to keep abreast of up-to date tools and techniques. ECSA code of conduct, Continuing Professional Development, ECSA outcomes, ECSA process and reasons for registration as CEng and PrEng. Displays understanding of the system of professional development. Accepts responsibility for own actions. Displays judgment in decision making during problem solving and design. Limits decision making to area of current competence. Reason about and make judgment on ethical aspects in case study context. Discerns boundaries of competence in problem solving and design. Case studies typical of engineering practice situations in which the graduate is likely to participate.
Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App