Code | Faculty | Department |
---|---|---|
02240182 | Faculty of Natural and Agricultural Sciences | Department: Mathematics and Applied Mathematics |
Credits | Duration | NQF level |
---|---|---|
Minimum duration of study: 1 jaar | Totale krediete: 135 | NQF level: 08 |
The progress of all honours candidates is monitored biannually by the postgraduate coordinator/head of department. A candidate’s study may be terminated if the progress is unsatisfactory or if the candidate is unable to finish his/her studies during the prescribed period.
Minimum krediete: 135
Stream 1: Applied analysis
Core credits: 75 credits
Elective credits: 60 credits
Stream 2: Differential equations and modelling
Core credits: 135 credits
Module-inhoud:
An introduction to the basic mathematical objects of linear functional analysis will be presented. These include metric spaces, Hilbert spaces and Banach spaces. Subspaces, linear operators and functionals will be discussed in detail. The fundamental theorems for normed spaces: The Hahn-Banach theorem, Banach-Steinhaus theorem, open mapping theorem and closed graph theorem. Hilbert space theory: Riesz' theorem, the basics of projections and orthonormal sets.
Module-inhoud:
Axiomatic set theory, ordinals, transfinite induction and recursion, ordinal arithmetic, the axiom of choice, cardinal arithmetic, the continuum hypothesis. Propositional and first order logic. The completeness and compactness theorems. Decidability, Gödel’s incompleteness theorems.
Module-inhoud:
The following topics will be covered: Galois theory and solving equations by radicals, introduction to the theory of R-modules, direct sums and products, projectivity and injectivity, finitely generated modules over Euclidean domains, primary factorisation, applications to Jordan and rational canonical forms of matrices.
Module-inhoud:
Measure and integration theory: The Caratheodory extension procedure for measures defined on a ring, measurable functions, integration with respect to a measure on a σ-ring, in particular the Lebesgue integral, convergence theorems and Fubini's theorem.
Probability theory: Measure theoretic modelling, random variables, expectation values and independence, the Borel-Cantelli lemmas, the law of large numbers. L¹-theory, L²-theory and the geometry of Hilbert space, Fourier series and the Fourier transform as an operator on L², applications of Fourier analysis to random walks, the central limit theorem.
Module-inhoud:
General topology: Concepts such as convergence, compactness, connectedness, separation axioms and continuity are introduced in topological spaces. Their basic properties are treated. Important topologies like the product topology and the quotient topology are discussed.
Algebraic topology: Homotopy, the fundamental group, covering spaces, homotopy type.
Module-inhoud:
A selection of special topics will be presented that reflects the expertise of researchers in the Department. The presentation of a specific topic is contingent on student numbers. Consult the website of the Department of Mathematics and Applied Mathematics for more details.
Module-inhoud:
An analysis as well as an implementation (including computer programs) of methods are covered. Numerical linear algebra: Direct and iterative methods for linear systems and matrix eigenvalue problems: Iterative methods for nonlinear systems of equations. Finite difference method for partial differential equations: Linear elliptic, parabolic, hyperbolic and eigenvalue problems. Introduction to nonlinear problems. Numerical stability, error estimates and convergence are dealt with.
Module-inhoud:
An analysis as well as an implementation (including computer programs) of methods is covered. Introduction to the theory of Sobolev spaces. Variational and weak formulation of elliptic, parabolic, hyperbolic and eigenvalue problems. Finite element approximation of problems in variational form, interpolation theory in Sobolev spaces, convergence and error estimates.
Module-inhoud:
Mathematical modelling of Random walk. Conditional expectation and Martingales. Brownian motion and other Lévy processes. Stochastic integration. Ito's Lemma. Stochastic differential equations. Application to finance.
Module-inhoud:
This module aims at using advanced undergraduate mathematics and rigorously applying mathematical methods to concrete problems in various areas of natural science and engineering.
The module will be taught by several lecturers from UP, industry and public sector. The content of the module may vary from year to year and is determined by relevant focus areas within the Department. The list of areas from which topics to be covered will be selected, includes: Systems of differential equations; dynamical systems; discrete structures; Fourier analysis; methods of optimisation; numerical methods; mathematical models in biology, finance, physics, etc.
Module-inhoud:
Field-theoretic and material models of mathematical physics. The Friedrichs-Sobolev spaces. Energy methods and Hilbert spaces, weak solutions – existence and uniqueness. Separation of variables, Laplace transform, eigenvalue problems and eigenfunction expansions. The regularity theorems for elliptic forms (without proofs) and their applications. Weak solutions for the heat/diffusion and related equations.
Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App