Programme: BSc Physics

Kindly take note of the disclaimer regarding qualifications and degree names.
Code Faculty Department
02133203 Faculty of Natural and Agricultural Sciences Department: Physics
Credits Duration NQF level
Minimum duration of study: 3 years Total credits: 430 NQF level:  07

Programme information

Those students registered for the BSc (Physics) programme and who have opted to select any of the dual major fields of study offered within this programme must take note of the following:

  • Their Academic Record will list all the modules that they have completed towards a second major field of study (based on final year modules completed).
  • Their Degree certificate will only print the officially approved programme name:

Bachelor of Science
Physics

Admission requirements

Important information for all prospective students for 2025

The admission requirements below apply to all who apply for admission to the University of Pretoria with a National Senior Certificate (NSC) and Independent Examination Board (IEB) qualifications. Click here for this Faculty Brochure.

Minimum requirements

Achievement level

English Home Language or English First Additional Language

Mathematics

Physical Sciences

APS

NSC/IEB

NSC/IEB

NSC/IEB

5

5

5

34

Life Orientation is excluded when calculating the APS. 

Applicants currently in Grade 12 must apply with their final Grade 11 (or equivalent) results.

Applicants who have completed Grade 12 must apply with their final NSC or equivalent qualification results.

Please note that meeting the minimum academic requirements does not guarantee admission.

Successful candidates will be notified once admitted or conditionally admitted.

Unsuccessful candidates will be notified after 30 June.

Applicants should check their application status regularly on the UP Student Portal at click here.

Applicants with qualifications other than the abovementioned should refer to the International undergraduate prospectus 2025: Applicants with a school leaving certificate not issued by Umalusi (South Africa), available at click here.

International students: Click here.

Transferring students

A transferring student is a student who, at the time of applying at the University of Pretoria (UP) is/was a registered student at another tertiary institution. A transferring student will be considered for admission based on NSC or equivalent qualification and previous academic performance. Students who have been dismissed from other institutions due to poor academic performance will not be considered for admission to UP.

Closing dates: Same as above.

Returning students

A returning student is a student who, at the time of application for a degree programme is/was a registered student at UP, and wants to transfer to another degree at UP. A returning student will be considered for admission based on NSC or equivalent qualification and previous academic performance.

Note:

  • Students who have been excluded/dismissed from a faculty due to poor academic performance may be considered for admission to another programme at UP, as per faculty-specific requirements.
  • Only ONE transfer between UP faculties and TWO transfers within a faculty will be allowed.
  • Admission of returning students will always depend on the faculty concerned and the availability of space in the programmes for which they apply.

Closing date for applications from returning students

Unless capacity allows for an extension of the closing date, applications from returning students must be submitted before the end of August via your UP Student Centre.

 

Other programme-specific information

1.1    Requirements for specific modules
A candidate who:

  1. does not qualify for STK 110, must enrol for STK 113 and STK 123;
  2. registers for Mathematical Statistics (WST) and Statistics (STK) modules must take note that WST and STK modules, except for STK 281, may not be taken simultaneously in a programme; a student must take one and only one of the following options:
  • WST 111, WST 121, WST 212, WST 211, WST 221, WST 311, WST 312, WST 322, WST 321, and STK 353

or

  • WST 111, WST 121, WST 212, WST 211, WST 221, WST 311, WST 312, WST 322, STK 320, STK 353.

or

  • STK 110, STC 122, STK 210, STK 220, WST 212, STK 310, STK 320, STK 353.
  1. registers for a module presented by another faculty must take note of the timetable clashes, prerequisites for that module, subminimum required in examination papers, supplementary examinations, etc.

1.2    Fundamental modules

  1. It is compulsory for all new first-year students to satisfactorily complete the Academic orientation (UPO 102) and to take Academic information management modules (AIM 111 and AIM 121) and Language and study skills (LST 110). Please see curricula for details.
  2. Students who intend to apply for admission to MBChB or BChD in the second semester, when places become available in those programmes, may be permitted to register for up to 80 module credits and 4 core modules in the first semester during the first year provided that they obtained a final mark of no less than 70% for Grade 12 Mathematics and achieved an APS of 34 or more in the NSC.

Promotion to next study year

A student will be promoted to the following year of study if he or she passed 100 credits of the prescribed credits for a year of study, unless the Dean on the recommendation of the relevant head of department decides otherwise. A student who does not comply with the requirements for promotion to the following year of study, retains the credit for the modules already passed and may be admitted by the Dean, on recommendation of the relevant head of department, to modules of the following year of study to a maximum of 48 credits, provided that it will fit in with both the lecture and examination timetable.

General promotion requirements in the faculty
All students whose academic progress is not acceptable can be suspended from further studies.

  • A student who is excluded from further studies in terms of the stipulations of the abovementioned regulations, will be notified in writing by the Dean or Admissions Committee at the end of the relevant semester.
  • A student who has been excluded from further studies may apply in writing to the Admissions Committee of the Faculty of Natural and Agricultural Sciences for re-admission.
  • Should the student be re-admitted by the Admissions Committee, strict conditions will be set which the student must comply with in order to proceed with his/her studies.
  • Should the student not be re-admitted to further studies by the Admissions Committee, he/she will be informed in writing.
  • Students who are not re-admitted by the Admissions Committee have the right to appeal to the Senate Appeals Committee.
  • Any decision taken by the Senate Appeals Committee is final.

Minimum credits: 142

Fundamental =     14
Core             =     64
Elective        =    64

Additional information:
Students must select elective modules with a total number of at least 64 credits according to the following streams. (Deviations allowed with permission from the head of department):

  • Mathematics as second major: Due to the modules prescribed for the BSc (Physics) module, taking mathematics as a second major in 3rd year is possible for all options. Please select one of the options below.
  • Second major in applied mathematics or mathematical statistics: WTW 115, WTW 152, WTW 162, WTW 123, WST 111, WST 121 (64 credits)
  • Second major in chemistry or applied mathematics: CMY 117, CMY 127, WTW 162, WTW 123, WTW 115, WTW 152 (64 credits)
  • Second major in chemistry or mathematical statistics: CMY 117, CMY 127, WST 111, WST 121 (64 credits)
  • Second major in chemistry or geology: CMY 117, CMY 127, GLY 155, GLY 163 (64 credits)
  • Second major in chemistry or meteorology: WKD 155 (16, S1), BME 120 (16, S2), GMC 110 (10, S2), [one of SCI 154 (16, S1), WST 111 (16, S1) or CMY 117 (16, S1)] and [one of WTW 123 (8, S2), WTW 162 (8, S2), CMY 127(16, S2, prerequisite CMY 117)] (32 + 34 (or 42) = 66 (or 74) credits).
  • Second major in chemistry with interest in biophysics: CMY 117, CMY 127, MLB 111, GTS 161, BOT 161 (64 credits)
  • Second major in chemistry with interest in astronomy: CMY 117, CMY 127, WTW 162, WTW 123, SCI 154 (64 credits)
  • Second major in applied mathematics with an interest in astronomy: WTW 115, WTW 152, WTW 162, WTW 123, SCI 154, COS 132 (64 credits) note: semesters unbalanced – Year credits: S1:80, S2:48
  • Computational physics: WTW 123, COS 132, COS 110, COS 122, COS 151 (64 credits note: semesters unbalanced – Year credits: S1:56, S2: 72)

Fundamental modules

Core modules

  • Module content:

    SI-units. Significant figures. Waves: intensity, superposition, interference, standing waves, resonance, beats, Doppler. Geometrical optics: Reflection, refraction, mirrors, thin lenses, instruments. Physical optics: Young-interference, coherence, diffraction, polarisation. Hydrostatics and dynamics: density, pressure, Archimedes’ principle, continuity, Bernoulli. Heat: temperature, specific heat, expansion, heat transfer. Vectors. Kinematics of a point: Relative, projectile, and circular motion. Dynamics: Newton’s laws, friction. Work: point masses, gasses (ideal gas law), gravitation, spring, power. Kinetic energy: Conservative forces, gravitation, spring. Conservation of energy. Conservation of momentum. Impulse and collisions. System of particles: Centre of mass, Newton’s laws. Rotation: torque, conservation of angular momentum, equilibrium, centre of gravity.

    View more

  • Module content:

    Simple harmonic motion and pendulums. Coulomb’s law. Electric field: dipoles, Gauss’ law.Electric potential. Capacitance. Electric currents: resistance, resistivity, Ohm’s law, energy, power, emf, RC-circuits. Magnetic Field: Hall-effect, Bio-Savart. Faraday’s and Lenz’s laws. Oscillations: LR-circuits. Alternating current: RLC-circuits, power, transformers. Introductory concepts to modern physics. Nuclear physics: Radioactivity.

    View more

  • Module content:

    *This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218 and WTW 220). Students will not be credited for more than one of the following modules for their degree: WTW 114, WTW 158, WTW 134, WTW 165.
    Functions, limits and continuity. Differential calculus of single variable functions, rate of change, graph sketching, applications. The mean value theorem, the rule of L'Hospital. Definite and indefinite integrals, evaluating definite integrals using anti-derivatives, the substitution rule.

    View more

  • Module content:

    *Students will not be credited for more than one of the following modules for their degree:
    WTW 124, WTW 146, WTW 148 and WTW 164. This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218, WTW 211 and WTW 220).

    The vector space Rn, vector algebra with applications to lines and planes, matrix algebra, systems of linear equations, determinants. Complex numbers and factorisation of polynomials. Integration techniques and applications of integration. The formal definition of a limit. The fundamental theorem of Calculus and applications. Vector functions and quadratic curves. 

    View more

Elective modules

  • Module content:

    Simple statistical analysis: Data collection and analysis: Samples, tabulation, graphical representation, describing location, spread and skewness. Introductory probability and distribution theory. Sampling distributions and the central limit theorem. Statistical inference: Basic principles, estimation and testing in the one- and two-sample cases (parametric and non-parametric). Introduction to experimental design. One- and twoway designs, randomised blocks. Multiple statistical analysis: Bivariate data sets: Curve fitting (linear and non-linear), growth curves. Statistical inference in the simple regression case. Categorical analysis: Testing goodness of fit and contingency tables. Multiple regression and correlation: Fitting and testing of models. Residual analysis. Computer literacy: Use of computer packages in data analysis and report writing.

    View more

  • Module content:

    Botanical principles of structure and function; diversity of plants; introductory plant systematics and evolution; role of plants in agriculture and food security; principles and applications of plant biotechnology; economical and valuable medicinal products derived from plants; basic principles of plant ecology and their application in conservation and biodiversity management.
    This content aligns with the United Nation's Sustainable Debelopment Goals of No Poverty, Good Health and Well-being, Climate Action, Responsible Consumption and Production, and Life on Land.

    View more

  • Module content:

    General introduction to inorganic, analytical and physical chemistry. Atomic structure and periodicity. Molecular structure and chemical bonding using the VSEPR-model. Nomenclature of inorganic ions and compounds. Classification of reactions: precipitation, acid-base, redox reactions and gas-forming reactions. Mole concept and stoichiometric calculations concerning chemical formulas and chemical reactions. Principles of reactivity: energy and chemical reactions. Physical behaviour gases, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to chemical kinetics.

    View more

  • Module content:

    Theory: General physical-analytical chemistry: Chemical equilibrium, acids and bases, buffers, solubility equilibrium, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and aminoacids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.

    View more

  • Module content:

    The focus is on object-oriented (OO) programming. Concepts including inheritance and multiple inheritance, polymorphism, operator overloading, memory management (static and dynamic binding), interfaces, encapsulation, reuse, etc. will be covered in the module. The module teaches sound program design with the emphasis on modular code, leading to well structured, robust and documented programs. A modern OO programming language is used as the vehicle to develop these skills. The module will introduce the student to basic data structures, lists, stacks and queues.

    View more

  • Module content:

    Fundamental concepts of modern operating systems in terms of their structure and the mechanisms they use are studied in this module. After completing this module, students will have gained, as outcomes, knowledge of real time, multimedia and multiple processor systems, as these will be defined and analysed. In addition, students will have gained knowledge on modern design issues of process management, deadlock and concurrency control, memory management, input/output management, file systems and operating system security. In order to experience a hands-on approach to the knowledge students would have gained from studying the abovementioned concepts, students will have produced a number of practical implementations of these concepts using the Windows and Linux operating systems.

    View more

  • Module content:

    This module introduces imperative computer programming, which is a fundamental building block of computer science. The process of constructing a program for solving a given problem, of editing it, compiling (both manually and automatically), running and debugging it, is covered from the beginning. The aim is to master the elements of a programming language and be able to put them together in order to construct programs using types, control structures, arrays, functions and libraries. An introduction to object orientation will be given. After completing this module, the student should understand the fundamental elements of a program, the importance of good program design and user-friendly interfaces. Students should be able to conduct basic program analysis and write complete elementary programs.

    View more

  • Module content:

    This module introduces concepts and terminology related to the computer science discipline. General topics covered include the history of computing, machine level representation of data, Boolean logic and gates, basic computer systems organisation, algorithms and complexity and automata theory. The module also introduces some of the subdisciplines of computer science, such as computer networks, database systems, compilers, information security and intelligent systems. The module also focues on modelling of algorithms.

    View more

  • Module content:

    Solar system; structure of solid matter; minerals and rocks; introduction to symmetry and crystallography; important minerals and solid solutions; rock cycle; classification of rocks. External geological processes (gravity, water, wind, sea, ice) and their products (including geomorphology). Internal structure of the earth. The dynamic earth – volcanism, earthquakes, mountain building – the theory of plate tectonics. Geological processes (magmatism, metamorphism, sedimentology, structural geology) in a plate tectonic context. Geological maps and mineral and rock specimens. Interaction between man and the environment, and nature of anthropogenic climate change.

    View more

  • Module content:

    This module will give an overview of earth history, from the Archaean to the present. Important concepts such as the principles of stratigraphy and stratigraphic nomenclature, geological dating and international and South African time scales will be introduced. A brief introduction to the principles of palaeontology will be given, along with short descriptions of major fossil groups, fossil forms, ecology and geological meaning. In the South African context, the major stratigraphic units, intrusions and tectonic/metamorphic events will be detailed, along with related rock types, fossil contents, genesis and economic commodities. Anthropogenic effects on the environment and their mitigation. Practical work will focus on the interpretation of geological maps and profiles.

    View more

  • Module content:

    History, present and future of cartography. Introductory geodesy: shape of the earth, graticule and grids, datum definition, elementary map projection theory, spherical calculations. Representation of geographical data on maps: Cartographic design, cartographic abstraction, levels of measurement and visual variables. Semiotics for cartography: signs, sign systems, map semantics and syntactics, explicit and implicit meaning of maps (map pragmatics). Critique maps of indicators to measure United Nations Sustainable Development Goals in South Africa.

    View more

  • Module content:

    Chromosomes and cell division. Principles of Mendelian inheritance: locus and alleles, dominance interactions, extensions and modifications of basic principles.. Probability studies. Sex determination and sex linked traits. Pedigree analysis. Genetic linkage and chromosome mapping. Chromosome variation.

    View more

  • Module content:

     Introduction to the molecular structure and function of the cell. Basic chemistry of the cell. Structure and composition of prokaryotic and eukaryotic cells. Ultrastructure and function of cellular organelles, membranes and the cytoskeleton. General principles of energy, enzymes and cell metabolism. Selected processes, e.g. glycolysis, respiration and/or photosynthesis. Introduction to molecular genetics: DNA structure and replication, transcription, translation. Cell growth and cell division.

    View more

  • Module content:

    Students from all faculties are welcome to join us in our exploration of the universe from an earth-bound perspective. We reflect on the whole universe from the sub microscopic to the vast macroscopic and mankind’s modest position therein. To what degree is our happiness determined by stars? Echoes from ancient firmaments - the astronomy of old civilisations. The universe is born with a bang. Stars, milky ways and planets are formed. Life is breathed into the landscape on earth, but is there life elsewhere? The architecture of the universe – distance measurements, structure of our solar system and systems of stars. How does it look like on neighbouring planets? Comets and meteorites. Life cycles of stars. Spectacular exploding stars! Exotica like pulsars and black holes.

    View more

  • Module content:

    Introduction to weather and climate. Climate of South Africa. Urban and rural climate. Meteorological instruments. Motion of the earth. Atmospheric mass and pressure. Energy and heat budget. Moisture in the atmosphere. Cloud development. Climate change. ENSO. Electromagnetic spectrum and remote sensing in meteorology. Synoptic weather systems of South Africa.

    View more

  • Module content:

    Characterisation of a set of measurements: Graphical and numerical methods. Random sampling. Probability theory. Discrete and continuous random variables. Probability distributions. Generating functions and moments.

    View more

  • Module content:

    Sampling distributions and the central limit theorem. Statistical inference: Point and interval estimation. Hypothesis testing with applications in one and two-sample cases. Introductory methods for: Linear regression and correlation, analysis of variance, categorical data analysis and non-parametric statistics.  Identification, use, evaluation and interpretation of statistical computer packages and statistical techniques.

    View more

  • Module content:

    Propositional logic: truth tables, logical equivalence, implication, arguments. Mathematical induction and well-ordering principle. Introduction to set theory. Counting techniques: elementary probability, multiplication and addition rules, permutations and combinations, binomial theorem, inclusion-exclusion rule.

    View more

  • Module content:

    Non-linear equations, numerical integration, initial value problems for differential equations, systems of linear equations. Algorithms for elementary numerical techniques are derived and implemented in computer programmes. Error estimates and convergence results are treated.

    View more

  • Module content:

    The module serves as an introduction to computer programming as used in science. Modelling of dynamical processes using difference equations; curve fitting and linear programming are studied. Applications are drawn from real-life situations in, among others, finance, economics and ecology.

    View more

  • Module content:

    *Students will not be credited for more than one of the following modules for their degree: WTW 162 and WTW 264.

    Introduction to the modelling of dynamical processes using elementary differential equations. Solution methods for first order differential equations and analysis of properties of solutions (graphs). Applications to real life situations.

    View more

Minimum credits: 144

Core             =    96
Elective         =   48

Additional information:
Students must select elective modules with a total number of at least 48 credits according to the following streams (deviations allowed with permission from the head of department):

  • Mathematics as second major: Due to the modules prescribed for the BSc (Physics) module, taking mathematics as a second major in 3rd year is possible for all options.
  • Second major applied mathematics: WTW 286 (12, S1), WTW 221 (12, S2) and PHY 210 (24, S2) (48 credits). WTW 285 (12, S2) may be taken additionally.
  • Second major statistics: WST 211, WST 221 (48 credits)
  • Second major in chemistry: CMY 282, CMY 283, CMY 284, CMY 285 (48 credits).
  • Second major in geology: GLY 253, GLY 263 (48 credits).
  • Second major in meteorology: WKD 261 (12, Q3), WKD 254 (12, S2), ENV 201 (14, Q2), WKD 263 (14, S1), WKD 265 (12, Q4) (28 + 36 = 64 credits). Note: due to the excess credits in the second year it is recommended that students doing a second major in meteorology enrol for ENV 201 in their third year of study.
  • Interest in astronomy: PHY 210, WTW 221, WTW 286 (48 credits) note: semester unbalanced: Year credits S1: 60, S2: 84)
  • Interest in computational physics: COS 210, COS 212, COS 226, COS 284 (56 credits) note: 24 + 32 = 56 credits = excess of 8 credits in second semester.

Core modules

  • Module content:

    Vibrating systems and waves (14 lectures)
    Simple harmonic motion (SHM). Superposition (different frequencies, equal frequencies). Perpendicular vibrations (Lissajous figures). Damped SHM. Forced oscillations. Resonance. Q-value. Transverse wave motion. Plane wave solution using method of separation of variables. Reflection and transmission at a boundary. Normal and eigenmodes. Wave packets. Group velocity.
    Modern physics (30 lectures)
    Special relativity: Galilean and Lorentz transformations. Postulates. Momentum and energy. 4 vectors and tensors. General relativity. Quantum physics. Failure of classical physics. Bohr model. Particle-wave duality. Schrödinger equation. Piece-wise constant potentials. Tunneling. X-rays. Laser. Nuclear physics: Fission. Fusion. Radioactivity.
    Heat and thermodynamics (12 lectures)
    Heat. First Law. Kinetic theory of gases. Mean free path. Ideal, Clausius, Van der Waals and virial gases. Entropy. Second Law. Engines and refrigerators. Third Law. Thermodynamic potentials: Enthalpy Helmholtz and Gibbs free energies, Chemical potential. Legendre transformations (Maxwell relations). Phase equilibrium. Gibbs phase rule.
    Modelling and simulation (7 practical sessions)
    Introduction to programming in a high level system: Concept of an algorithm and the basic logic of a computer programme. Symbolic manipulations, graphics, numerical computations. Applications: Selected illustrative examples.
    Error Analysis (7 practical sessions)
    Experimental uncertainties. Propagation of uncertainties. Statistical analysis of random uncertainties. Normal distribution. Rejection of data. Least-squares fitting. Covariance and correlation.

    View more

  • Module content:

    Classical mechanics (28 lectures)
    Fundamental concepts, energy and angular momentum, calculus of variations and Lagrangian mechanics, conservative central forces and two body problems, scattering, mechanics in rotating reference frames, many body systems.
    Physical Optics (14 lectures)
    Maxwell’s equations, wave equation and plane wave solution, coherence, interference,
    diffraction, polarisation.
    Physics of Materials (14 lectures)
    Classification of materials. Atomic bonding. Crystallography. Defects. Material strength.
    Phase diagram's, Ceramics. Polymers. Composites. Fracture. Electrical and
    magnetic properties. Semiconductors. Smart materials Nanotechnology.
    Experiments (14 sessions)

    View more

  • Module content:

    This is an introduction to linear algebra on Rn. Matrices and linear equations, linear combinations and spans, linear independence, subspaces, basis and dimension, eigenvalues, eigenvectors, similarity and diagonalisation of matrices, linear transformations.

    View more

  • Module content:

    Calculus of multivariable functions, directional derivatives. Extrema and Lagrange multipliers. Multiple integrals, polar, cylindrical and spherical coordinates.

    View more

  • Module content:

    *This module is recommended as an elective only for students who intend to enrol for WTW 310 and/or WTW 320. Students will not be credited for more than one of the following modules for their degree: WTW 220 and WTW 224.

    Properties of real numbers. Analysis of sequences and series of real numbers. Power series and theorems of convergence. The Bolzano-Weierstrass theorem. The intermediate value theorem and analysis of real-valued functions on an interval. The Riemann integral: Existence and properties of the interval.

    View more

  • Module content:

    Vectors and geometry. Calculus of vector functions with applications to differential geometry, kinematics and dynamics. Vector analysis, including vector fields, line integrals of scalar and vector fields, conservative vector fields, surfaces and surface integrals, the Theorems of Green, Gauss and Stokes with applications.

    View more

Elective modules

  • Module content:

    Theory: Classical chemical thermodynamics, gases, first and second law and applications, physical changes of pure materials and simple compounds. Phase rule: Chemical reactions, chemical kinetics, rates of reactions.

    View more

  • Module content:

    Statistical evaluation of data in line with ethical practice, gravimetric analysis, aqueous solution chemistry, chemical equilibrium, precipitation-, neutralisation- and complex formation titrations, redox titrations, potentiometric methods, introduction to electrochemistry. Examples throughout the course demonstrate the relevance of the theory to meeting the sustainable development goals of clean water and clean, affordable energy. 

    View more

  • Module content:

    Resonance, conjugation and aromaticity. Acidity and basicity. Introduction to 13C NMR spectroscopy. Electrophilic addition: alkenes. Nucleophilic substitution, elimination, addition: alkyl halides, alcohols, ethers, epoxides, carbonyl compounds: ketones, aldehydes, carboxylic acids and their derivatives Training in an ethical approach to safety that protects self, others and the environment is integral to the practical component of the course.

    View more

  • Module content:

    Atomic structure, structure of solids (ionic model). Coordination chemistry of transition metals: Oxidation states of transition metals, ligands, stereochemistry, crystal field theory, consequences of d-orbital splitting, electrochemical properties of transition metals in aqueous solution. Fundamentals of spectroscopy and introduction to IR spectroscopy. During practical training students learn to acquire and report data ethically. Practical training also deals with the misuse of chemicals and appropriate waste disposal to protect the environment and meet the UN sustainable development goals.

    View more

  • Module content:

    This module introduces students to a framework for investigating both computability and complexity of problems. Topics include, but are not limited to: finite-state machines, regular expressions and their application in a language such as awk, the Halting problem, context-free grammars, P vs NP problem, NP-complete class, reduction techniques, regular languages, DFAs and NFAs, Lattices, Church-Turing thesis.

    View more

  • Module content:

    Data abstraction is a fundamental concept in the design and implementation of correct and efficient software. In prior modules, students are introduced to the basic data structures of lists, stacks and queues. This module continues with advanced data structures such as trees, hash tables, heaps and graphs, and goes into depth with the algorithms needed to manipulate them efficiently. Classical algorithms for sorting, searching, traversing, packing and game playing are included, with an emphasis on comparative implementations and efficiency. At the end of this module, students will be able to identify and recognise all the classical data structures; implement them in different ways; know how to measure the efficiency of implementations and algorithms; and have further developed their programming skills, especially with recursion and polymorphism.

    View more

  • Module content:

    Computer science courses mostly deal with sequential programs. This module looks at the fundamentals of concurrency; what it means, how it can be exploited, and what facilities are available to determine program correctness. Concurrent systems are designed, analysed and implemented.

    View more

  • Module content:

    This module provides the foundations on which other modules build by enabling a deeper understanding of how software interacts with hardware. It will teach the design and operation of modern digital computers by studying each of the components that make up a digital computer and the interaction between these components. Specific areas of interest, but not limited to, are: representation of data on the machine-level; organisation of the machine on the assembly level; the architecture and organisation of memory; inter- and intra-component interfacing and communication; data paths and control; and parallelism. Topic-level detail and learning outcomes for each of these areas are given by the first 6 units of ‘Architecture and Organisation’ knowledge area as specified by the ACM/IEEE Computer Science Curriculum 2013.
    The concepts presented in the theory lectures will be reinforced during the practical sessions by requiring design and implementation of the concepts in simulators and assembly language using an open source operating system.

    View more

  • Module content:

    Introduces basic concepts and interrelationships required to understand our atmosphere, with a strong focus on an introduction to weather and climate. A key component of the course is an introduction to climate change, including the science of climate change, introducing climate change projections, and climate change impacts. A key focus of the second part of the course will be climate change implications for the attainment of SDGs and Aichi targets on the African continent, under a range of plausible scenarios.

    View more

  • Module content:

    Physical processes that influence the earth’s surface and management. Specific processes and their interaction in themes such as weathering; soil erosion; slope, mass movement and periglacial processes. Practical laboratory exercises and assignments are based on the themes covered in the module theory component.

    View more

  • Module content:

    *This module is for Architecture and Landscape Architecture students only.
    The theory component covers geomorphological aspects of the built environment including landscape identification; weathering or deterioration of natural stone and application to design and preservation of buildings and monuments; slope hydrology and stability conditions; soil erosion processes and construction impacts; drainage modification in urban areas; wetland identification, human impacts and rehabilitation; recreational impacts and management. In addition to the theory a field-based project is undertaken.

    View more

  • Module content:

    The nature of geographical data and measurement.Application of statistics in the geographical domain. Probability, probability distributions and densities, expected values and variances, Central Limit theorem. Sampling techniques. Exploratory data analysis, descriptive statistics, statistical estimation, hypothesis testing, correlation analysis and regression analysis. Examples used throughout the course are drawn from South African and African case studies and taught within the framework of the UN Sustainable Development Goals.

    View more

  • Module content:

    This module introduces the basic principles and concepts of sedimentology. Building on existing knowledge on stratigraphy and mineralogy from the first year, sediments will be followed from their origin (precursor rocks that experienced weathering and erosion) through diverse modes of transport to their final place of deposition on land and in the sea. The formation of sedimentary textures and structures and their interpretation in terms of sedimentary environments, as well as post-depositional diagenetic processes, will be discussed. Furthermore, some economic aspects of sedimentology will be covered, such as placer deposits and conventional and renewable energy sources. Later parts in the course will concentrate on basin-forming processes and provide an overview of modern basin analysis. An introduction to sequence stratigraphy and sedimentary geochemistry will be offered as part of this, both of which are important applications of sedimentology for interpreting sea level variations and climatic changes.

    Practical sessions: During the hands-on practicals, participants will learn how to classify rocks using a wide spectrum of different techniques while developing an appreciation of the processes that result in the formation of sediments, sedimentary rocks, and entire sedimentary sequences.
    This will include presenting the fundamentals of optical mineralogy and how to examine some of the major minerals that comprise sedimentary rocks in thin sections using transmitted light microscopy. Further aspects of the practical sessions will focus on grain size/sieve analysis and basic statistical analysis. Sedimentary geochemistry will be used to identify the degrees of alteration and help interpret climatic and environmental conditions during the time of sediment emplacement. Furthermore, field data acquisition from sedimentary rocks, interpretation of sedimentary profiles and core logs, and writing of reports and oral presentations will be practiced.

    View more

  • Module content:

    This module aims to provide students with a working knowledge and skills to learn methods and techniques for collecting, processing and analysing remotely sensed data. Throughout the module, emphasis will be placed on image processing, image analysis, image classification, remote sensing and applications of remote sensing in geographical analysis and environmental monitoring. The module is composed of lectures, readings, practical exercises research tasks and a project or assignments of at least 64 notional hours. In particular, the practical exercises and research tasks incorporate South African examples using satellite remotely-sensed data, as well as field spectral data measurements, to promote understanding of the state of land cover and land use types (e.g. spanning agricultural resources, water resources, urbanization) and how changes over time could impact on the changing climate in accordance with the United Nation’s Sustainable Development Goals.

    View more

  • Module content:

    Introduction to the universe: distance and time scales. Solar System overview. Techniques of astronomy: telescopes and optics, basic radio receiver. Solar system: gas giants, terrestrial planets, small bodies. Stellar evolution and death. Interstellar medium: gas, dust, molecules and masers. Supernova and Pulsars: galaxies and the Milky Way, galactic evolution and classification. Quasars, apparent superluminal motion, black holes. Big Bang, and the age of the universe. Expansion of the universe. SKA, MeerKAT, SALT, HESS and history of astronomy in SA. Other current topics in astronomy.

    View more

  • Module content:

    Meteorological data acquisition. Manipulation of multidimensional meteorological data sets. Spatial representation and interpretation of weather data. Application and interpretation of dynamic equations.

    View more

  • Module content:

    Basic thermodynamic laws for dry and humid air. The equation of state. Adiabatic processes and temperature lapse rates. The Clausius-Clapeyron equation. Cloud microphysics. The physical basis of climate change. Practical application and Areological diagrams.

    View more

  • Module content:

    Mathematical methods for meteorology, second law of motion in spherical coordinates. Acceleration in rotating co-ordinates, fundamental forces, momentum equation. Three dimensional flow balance, conservation of mass, heat equation, thermodynamic energy equation. Introduction to finite difference methods. Numerical estimation of the geostrophic wind, vorticity and divergence. Advection of temperature. Development of a two-dimensional temperature advection model.

    View more

  • Module content:

    Display formats of remote sensed data, projections and color schemes. Common channels available from meteorological satellite sensors, including visible, near infra-red, water vapour and infra-red. Channel combination, channel differencing and RGB images. Image selection for observation of synoptic and mesoscale weather systems, natural hazards and clouds.

    View more

  • Module content:

    Set theory. Probability measure functions. Random variables. Distribution functions. Probability mass functions. Density functions. Expected values. Moments. Moment generating functions. Special probability distributions: Bernoulli, binomial, hypergeometric, geometric, negative binomial, Poisson, Poisson process, discrete uniform, uniform, gamma,exponential, Weibull, Pareto, normal. Joint distributions: Multinomial, extended hypergeometric, joint continuous distributions. Marginal distributions. Independent random variables. Conditional distributions. Covariance, correlation. Conditional expected values. Transformation of random variables: Convolution formula. Order statistics. Stochastic convergence: Convergence in distribution. Central limit theorem. Practical applications. Practical statistical modelling and analysis using statistical computer packages and the interpretation of the output.

    View more

  • Module content:

    Stochastic convergence: Asymptotic normal distributions, convergence in probability. Statistics and sampling distributions: Chi-squared distribution. Distribution of the sample mean and sample variance for random samples from a normal population. T-distribution. F-distribution. Beta distribution. Point estimation: Method of moments. Maximum likelihood estimation. Unbiased estimators. Uniform minimum variance unbiased estimators. Cramer-Rao inequality. Efficiency. Consistency. Asymptotic relative efficiency.
    Bayes estimators. Sufficient statistics. Completeness. The exponential class. Confidence intervals. Test of statistical hypotheses. Reliability and survival distributions. Practical applications. Practical statistical modelling and analysis using statistical computer packages and the interpretation of the output.

    View more

  • Module content:

    Abstract vector spaces, change of basis, matrix representation of linear transformations, orthogonality, diagonalisability of symmetric matrices, some applications.

    View more

  • Module content:

    *This module does not lead to admission to WTW 310 or WTW 320. Students will not be credited for more than one of the following modules for their degree: WTW 220 and WTW 224.
    Sequences of real numbers: convergence and monotone sequences. Series of real numbers: convergence, integral test, comparison tests, alternating series, absolute convergence, ratio and root tests. Power series: representation of functions as power series, Taylor and Maclaurin series. Application to series solutions of differential equations. 

    View more

  • Module content:

    Theory and solution methods for linear differential equations as well as for systems of linear differential equations. Theory and solution methods for first order non-linear differential equations. The Laplace transform with application to differential equations. Application of differential equations to modelling problems.

    View more

  • Module content:

    Numerical integration. Numerical methods to approximate the solution of non-linear equations, systems of equations (linear and non-linear), differential equations and systems of differential equations. Direct methods to solve linear systems of equations.

    View more

  • Module content:

    Setting up and solving recurrence relations. Equivalence and partial order relations. Graphs: paths, cycles, trees, isomorphism. Graph algorithms: Kruskal, Prim, Fleury. Finite state automata.

    View more

  • Module content:

    *Students will not be credited for more than one of the modules for their degree: WTW 264, WTW 286
    Theory and solution methods for ordinary differential equations and initial value problems: separable and linear first-order equations, linear equations of higher order, systems of linear equations. Application to mathematical models.  Numerical methods applied to nonlinear systems.Qualitative analysis of linear systems.

    View more

Minimum credits: 144

Core             =    72
Elective         =   72

Additional information:
Students who want to register PHY 353 and PHY 363 must make sure, before registration, that a suitable project and supervisor has been confirmed with the head of department.  
Students must select elective modules with a total number of at least 72 credits from the following streams (deviations allowed with permission from the head of department):

  • Mathematics as second major: WTW 310, WTW 320, WTW 381 and WTW 389 (72 credits).
  • Applied Mathematics as second major: At least four of WTW 310, WTW 382, WTW 383, 386 and WTW 387 (72 of 90 credits).
  • Mathematical statistics as second major: WST 311, WST 312, WST 321, STK 353 (79 credits) Unbalanced: 36 + 43
  • Chemistry as second major: CMY 382, CMY 383, CMY 384, CMY 385 (72 credits).
  • Geology as second major: GLY 370 and GLY 367 (72 credits)
  • Meteorology as second major: WKD 352, WKD 361, WKD 315, WKD 316 (72 credits). Note: due to the excess credits in the second year it is recommended that students doing a second major in physics enrol for ENV 201 in their third year of study.
  • Astronomy, astrophysics and high energy physics: PHY 300, PHY 310, WTW 383 (72 credits)
  • Interest in computational physics: COS 314, COS 344, COS 333, COS 330 (72 credits).

Core modules

  • Module content:

    Electronics (14 lectures)
    Thévenin and Norton equivalent circuits, superposition principle, RC, LC and LRC circuits. Semiconductor diode. Bipolar transistor. Operational amplifiers. Computer controlled instrumentation.
    Electromagnetism (21 lectures)
    Electrostatics: Coulomb’s law, divergence and curl of E, Gauss’ law, Laplace’s equation, image charge problems, multipole expansion.
    Magnetostatics: Lorenz force, Biot-Savart law, divergence and curl of magnetic field strength, Ampère’s law, magnetic vector potential, multipole expansion, boundary conditions.
    Electrodynamics: Electromotive force, electromagnetic induction, Maxwell’s equations, wave equation.
    Electric and magnetic fields in matter: Polarisation, electric displacement and Gauss’s law in dielectrics, linear dielectrics. Magnetisation (diamagnets, paramagnets, ferromagnets), auxiliary field H and Ampère’s law in magnetised materials, linear and nonlinear media.
    Quantum mechanics (28 lectures)
    The Schrödinger equation, the statistical interpretation of the wave function, momentum, the uncertainty principle, the time-independent Schrödinger equation, stationary states, the infinite square well potential, the harmonic oscillator, the free particle, the Delta-Function potential, the finite square well potential, Hilbert spaces, observables, eigen functions of a Hermitian operator, Dirac notation, the Schrödinger equation in spherical coordinates, the hydrogen atom, angular momentum spin.

    View more

  • Module content:

    Statistical mechanics (28 lectures)
    Isolated systems in thermodynamical equilibrium. Systems in equilibrium with a heat bath: the canonical ensemble, Gibbs' entropic formula, classical statistical mechanics, energy equipartition theorem, thermodynamic potentials, paramagnetism.
    The classical limit of perfect gases: non-distinguishable character of quantum particles, the equation of state of the classical ideal gas. Quantum perfect gases: Black body radiation, the grand canonical ensemble, Fermi-Dirac distribution, the free electron gas in metals, the Bose-Einstein distribution, Bose-Einstein condensation.
    Solid state physics (28 lectures)
    Crystal structures, the reciprocal lattice, x-ray diffraction, lattice vibration, the Debye model, characteristics of solids, the free electron model, Pauli paramagnetism, electronic heat capacity, the relaxation time, electrical conduction, the classical Hall effect, thermal conduction in metals, failures of the free electron model, the independent electron model, band theory of solids.
    Computational Physics and modelling. Assessment will be done through a portfolio of project reports. The topics for the projects will be selected from various sub-disciplines of Physics.

    View more

Elective modules

  • Module content:

    Theory: Molecular quantum mechanics. Introduction: Shortcomings of classical physics, dynamics of microscopic systems, quantum mechanical principles, translational, vibrational and rotational movement. Atomic structure and spectra: Atomic hydrogen, multiple electron systems, spectra of complex atoms, molecular structure, the hydrogen molecule ion, diatomic and polyatomic molecules, structure and properties of molecules. Molecules in motion: Viscosity, diffusion, mobility. Surface chemistry: Physisorption and chemisorption, adsorption isotherms, surface tension, heterogeneous catalytic rate reactions, capillarity.

    View more

  • Module content:

    Separation methods: Extraction, multiple extraction, chromatographic systems. Spectroscopy: Construction of instruments, atomic absorption and atomic emission spectrometry, surface analysis techniques. Mass spectrometry. These techniques are discussed in terms of their use in environmental analysis and the value they contribute to meeting the UN sustainable development goals (#3,6 & 11). Instrumental electrochemistry. The relevance of electrochemistry to providing affordable and clean energy (UN SDG#7) is addressed.

    View more

  • Module content:

    Theory: NMR spectroscopy: applications. Aromatic chemistry, Synthetic methodology in organic chemistry. Carbon-carbon bond formation: alkylation at nucleophilic carbon sites, aldol and related condensations, Wittig and related reactions, acylation of carbanions (Claisen condensation). Practical: Laboratory sessions are designed to develop the rational thinking behind the design of organic chemistry experiments. An industrial project specifically prepares students for work in SA industry context and honours projects. As part of this practical programme the UN sustainable development goals must be considered in evaluating the best industrial process.

    View more

  • Module content:

    Theory: Structure and bonding in inorganic chemistry. Molecular orbital approach, diatomic and polyatomic molecules, three-centre bonds, metal-metal bonds, transition metal complexes, magnetic properties, electronic spectra, acid-base concepts, non-aqueous solvents, special topics.

    View more

  • Module content:

    The main objective of this module is to introduce a selection of topics from artificial intelligence (AI), and to provide the student with the background to implement AI techniques for solving complex problems.
    This module will cover topics from classical AI, as well as more recent AI paradigms. These topics include: search methods, game playing, knowledge representation and reasoning, machine learning, neural networks, genetic algorithms, artificial life, planning methods, and intelligent agents. In the practical part of this module, students will get experience in implementing
    (1) game trees and evolving game-playing agents;
    (2) a neural network and applying it to solve a real-world problem; and
    (3) a genetic algorithm and applying it to solve a real-world problem.

    View more

  • Module content:

    This module develops an appreciation of the fundamentals and design principles for information assurance and security. Students will develop a clear understanding of the basic information security services and mechanisms, enabling them to design and evaluate the integration of solutions into the user application environment. Emphasis will be placed on services such as authorisation and confidentiality. Students will  acquire knowledge and skills of Security Models such as the Bell-LaPadula, Harrison-Ruzzo Ullman and Chinese Wall Model. Students will develop a detailed understanding of the confidentiality service by focusing on cryptology and the practical implementation thereof. The student will be introduced to professional and philosophical ethics. At the end of the module students will be able to engage in a debate regarding the impact (local and global) of computers on individuals, organisations and society. The professionalism of IT staff will be discussed against national and international codes of practices such as those of the CSSA, ACM and IEEE.

    View more

  • Module content:

    Programming languages are the backbone for software development. Each language has its own different syntax and semantics, but there are many common concepts that can be studied and then illustrated through the languages. The module concentrates on issues of object orientation, including delegation, iteration and polymorphism. It surveys how languages provide the basic building blocks for data and control, as well as exception handling and concurrency. At the end of the module, students will be able to appreciate the rich history behind programming languages, leading to independent principles that evolve over time. They will be skilled at using a variety of programming languages, including new paradigms such as functional, logical and scripting, and will know how to learn a new language with ease. From this experience, they will be able to apply evaluation criteria for choosing an appropriate programming language in a given scenario.

    View more

  • Module content:

    The aim of this module is to acquire a sound knowledge of the basic theory of interactive computer graphics and basic computer graphics programming techniques. The theory will cover graphics systems and models, graphics programming, input and interaction, geometric objects and transformations, viewing in 3D, shading, rendering techniques, and introduce advanced concepts, such as object-oriented computer graphics and discrete techniques. The module includes a practical component that enables students to apply and test their knowledge in computer graphics. The OpenGL graphics library and the C programming language will be used for this purpose.

    View more

  • Module content:

    This module details the genesis and exploitation of major ore deposits, with an emphasis on South African examples. The processes through which ore deposits are formed and modified will be discussed, highlighting the relevance of sedimentary, metamorphic and igneous processes in the genesis of world-class ore bodies. The module will also address the methods of mining commonly used, and the international commodity market, including a brief introduction to ore reserve estimation and the evaluation of potential ore deposits. The section of the module involving mineral exploration and mining will emphasize the need of pursuing a sustainable mineral resources development mindset, by addressing and sharing ideas on the impact that mining has on environmental, social and economic issues including community welfare, impact of mining on land use, and rehabilitation post mining.

    View more

  • Module content:

    This is an integrated theoretical and practical module dealing with the principles and analysis of deformed rocks, as well as the movement of fluids like water and air through these rocks and other media such as soils and karst. Faults, folds and shear zones form and behave differently in terms of seismology and hydraulic behaviour in the vadose (unsaturated) and phreatic (saturated) zones. Underground water feeds rivers and biota for survival. It is, however, also susceptible to contamination and pollution causing changes in its quality due to many natural and anthropogenic activities. In countries like South Africa, where fractured aquifers dominate, structural geology is the first step in understanding this significant source of water.

    View more

  • Module content:

    Structure of the universe, navigation of the sky, spherical geometry, optical, radio and high energy physics and sources, instruments, practical observational skills, data recording, analysis, interpretation (signal and image processing, noise, calibration, error analysis). Project: A selected project in either optical or radio astronomy, resulting in a formal report and a presentation.

    View more

  • Module content:

    Relativistic kinematics, fundamentals of elementary particle physics, the four forces of nature and the Standard Model, beyond the Standard Model, early universe cosmology (inflation, baryogenesis), the Cosmic Microwave Background, high-energy astronomy (cosmic rays, gamma rays and neutrinos), gravitational waves, dark matter (evidence, candidates, detection), dark energy and the Standard Cosmological Model.

    View more

  • Module content:

    *Cannot be used as substitute for other Physics 300 modules to obtain admission to the BSc(Hons) in Physics.
    A student is required to complete a project under guidance of the lecturer. The nature of the project is determined jointly by the student, lecturer and the head of department.

    View more

  • Module content:

    *Cannot be used as substitute for other Physics 300 modules to obtain admission to the BSc(Hons) in Physics
    A student is required to complete a project under guidance of the lecturer. The nature of the project is determined jointly by the student, lecturer and the head of department.

    View more

  • Module content:

    Data exploration. Data wrangling. Statistical coding. Algorithmic thinking.  Sampling: basic techniques in probability, non-probability, and resampling methods. Text mining and analytics. Machine learning: classification and clustering. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.

    View more

  • Module content:

    Mean state, major patterns of atmospheric variability in the mid-latitudes and polar regions. Air masses. Synoptic scale cold, warm, occluded and quasistationary fronts, frontogenesis. Mid-latitude depressions, Norwegian cyclone model, conveyor belts. Basic cyclone model, Shapiro-Keyser model hybrid models, cyclogenesis. Polar weather systems; katabatic winds, barrier winds, cold-air damming, polar lows. Jet stream and jet streaks. Extreme weather and impacts. Conceptual models.

    View more

  • Module content:

    Mean state, major patterns of atmospheric variability in the tropics. Tropical weather systems and their temporal variability, inter tropical convergence zone, tropical waves, trade inversions, trade winds, tropical and sub-tropical jet streams, cloud clusters, tropical depressions, Africánes, sub-tropical ridges, upper-level anticyclones. Tropical cyclones and warnings. Analysis techniques. Tropical waves, Kelvin waves, equatorial Rossby waves and Madden Julian Oscillation. Physical and dynamical process in monsoon circulation. Hazardous weather. Conceptual models and case studies.

    View more

  • Module content:

    Scale analyses and simplification of the basic equations. The geostrophic, thermal and gradient wind. The vorticity equation and divergence. Potential vorticity. Vertical motion and surface pressure tendency. Vorticity in barotropic fluids. Vorticity and divergence fields in a present and future climate

    View more

  • Module content:

    Tendency and Omega equations. Model of a boroclinic system. Introduction to numerical models. Application in meteorological display and analysis software.Ascending and subsiding motion in a present and future climate.

    View more

  • Module content:

    Multivariate statistical distributions: Moments of a distribution, moment generating functions, independence. Multivariate normal distribution: Conditional distributions, partial and multiple correlations. Distribution of quadratic forms in normal variables. Multivariate normal samples: Estimation of the mean vector and covariance matrix, estimation of correlation coefficients, distribution of the sample mean, sample covariance matrix. Principal component analysis.The linear model: Models of full rank, least squares estimators, test of hypotheses.The generalised linear model: Exponential family mean and variance, link functions, deviance and residual analysis, test statistics, log- linear and logit models. Practical applications: Practical statistical modelling and analysis using statistical computer packages and interpretation of the output.

    View more

  • Module content:

    Definition of a stochastic process. Stationarity. Covariance stationary. Markov property. Random walk. Brownian motion. Markov chains. Chapman-Kolmogorov equations. Recurrent and transient states. First passage time. Occupation times. Markov jump processes. Poisson process. Birth and death processes. Structures of processes. Structure of the time-homogeneous Markov jump process. Applications in insurance. Practical statistical modelling, analysis and simulation using statistical computer packages and the interpretation of the output.

    View more

  • Module content:

    Note: Only one of the modules WST 321 or STK 320 may be included in any study programme. 

    Stationary and non-stationary univariate time-series. Properties of autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) processes. Identification, estimation and diagnostic testing of a time-series model. Forecasting. Multivariate time-series. Practical statistical modelling and analysis using statistical computer packages, including that of social responsibility phenomena.

    View more

  • Module content:

    Topology of finite dimensional spaces: Open and closed sets, compactness, connectedness and completeness. Theorems of Bolzano-Weierstrass and Heine-Borel. Properties of continuous functions and applications. Integration theory for functions of one real variable. Sequences of functions.

    View more

  • Module content:

    Series of functions, power series and Taylor series. Complex functions, Cauchy- Riemann equations, Cauchy's theorem and integral formulas. Laurent series, residue theorem and calculation of real integrals using residues.

    View more

  • Module content:

    Group theory: Definition, examples, elementary properties, subgroups, permutation groups, isomorphism, order, cyclic groups, homomorphisms, factor groups. Ring theory: Definition, examples, elementary properties, ideals, homomorphisms, factor rings, polynomial rings, factorisation of polynomials. Field extensions, applications to straight-edge and compass constructions.

    View more

  • Module content:

    Matrix exponential function: homogeneous and non-homogeneous linear systems of differential equations. Qualitative analysis of systems: phase portraits, stability, linearisation, energy method and Liapunov's method. Introduction to chaotic systems. Application to real life problems.

    View more

  • Module content:

    Direct methods for the numerical solution of systems of linear equations, pivoting strategies. Iterative methods for solving systems of linear equations and eigenvalue problems. Iterative methods for solving systems of nonlinear equations. Introduction to optimization. Algorithms for the considered numerical methods are derived and implemented in computer programmes. Complexity of computation is investigated. Error estimates and convergence results are proved.

    View more

  • Module content:

    Conservation laws and modelling. Fourier analysis. Heat equation, wave equation and Laplace's equation. Solution methods including Fourier series. Energy and other qualitative methods.

    View more

  • Module content:

    Kinematics of a continuum: Configurations, spatial and material description of motion. Conservation laws. Analysis of stress, strain and rate of deformation. Linear constitutive equations. Applications: Vibration of beams, equilibrium problems in elasticity and special cases of fluid motion.

    View more

  • Module content:

    Axiomatic development of neutral, Euclidean and hyperbolic geometry. Using models of geometries to show that the parallel postulate is independent of the other postulates of Euclid.

    View more


General Academic Regulations and Student Rules
The General Academic Regulations (G Regulations) and General Student Rules apply to all faculties and registered students of the University, as well as all prospective students who have accepted an offer of a place at the University of Pretoria. On registering for a programme, the student bears the responsibility of ensuring that they familiarise themselves with the General Academic Regulations applicable to their registration, as well as the relevant faculty-specific and programme-specific regulations and information as stipulated in the relevant yearbook. Ignorance concerning these regulations will not be accepted as an excuse for any transgression, or basis for an exception to any of the aforementioned regulations. The G Regulations are updated annually and may be amended after the publication of this information.

Regulations, degree requirements and information
The faculty regulations, information on and requirements for the degrees published here are subject to change and may be amended after the publication of this information.

University of Pretoria Programme Qualification Mix (PQM) verification project
The higher education sector has undergone an extensive alignment to the Higher Education Qualification Sub-Framework (HEQSF) across all institutions in South Africa. In order to comply with the HEQSF, all institutions are legally required to participate in a national initiative led by regulatory bodies such as the Department of Higher Education and Training (DHET), the Council on Higher Education (CHE), and the South African Qualifications Authority (SAQA). The University of Pretoria is presently engaged in an ongoing effort to align its qualifications and programmes with the HEQSF criteria. Current and prospective students should take note that changes to UP qualification and programme names, may occur as a result of the HEQSF initiative. Students are advised to contact their faculties if they have any questions.

Copyright © University of Pretoria 2024. All rights reserved.

FAQ's Email Us Virtual Campus Share Cookie Preferences