Programme: BEngHons Structural Engineering

Kindly take note of the disclaimer regarding qualifications and degree names.
Code Faculty
12240122 Faculty of Engineering, Built Environment and Information Technology
Credits Duration
Minimum duration of study: 1 year Total credits: 128

Programme information

The curriculum is determined in consultation with the relevant heads of departments. A student is required to pass modules to the value of at least 128 credits.

The degree is awarded on the basis of examinations only.

Examinations and pass requirements

  1. The examination in each module for which a student is registered, takes place during the normal examination period after the conclusion of lectures (i.e. October/November or May/June).
  2. A student registered for the honours degree must complete his or her studies within two years (full-time), or within three years (part-time) after first registration for the degree: Provided that the Dean, on recommendation of the relevant head of department, may approve a stipulated limited extension of this period.
  3. A student must obtain at least 50% in an examination for each module where no semester or year mark is required. A module may only be repeated once.
  4. In modules where semester or year marks are awarded, a minimum examination mark of 40% and a final mark of 50% is required.
  5. No supplementary or special examinations are granted at postgraduate level.

Pass with distinction

A student passes with distinction if he or she obtains a weighted average of at least 75% in the first 128 credits for which he or she has registered (excluding modules which were discontinued timeously). The degree is not awarded with distinction if a student fails any one module (excluding modules which were discontinued timeously).

Minimum credits: 128

Core modules

  • Module content:

    In the first part of this course, numerical procedures and some underlying theory for solving systems of equations, eigenvalue problems, integration, approximation and boundary value problems will be discussed. The second part of the course covers general finite element theory, discretization aspects related to geometry, nodes and numbering, element type and shape, interpolation functions, formulation of element characteristic matrices and vectors for elasticity problems, assembly and solution of the finite element equations, modelling procedures and results processing. The student will use Finite Element software to apply the theory that was covered in the course for solving typical Civil Engineering problems.

    View more

  • Module content:

    *This is a compulsory module.

    The course will require all honours students to conduct research in an appropriate field of civil engineering, linked to the main discipline in which the student specializes for their honours degree.

    View more

Elective modules

  • Module content:

    A research term paper will be prepared.

    Properties of concrete and concrete mixes. Characteristics of Portland cement and supplementary cementitious materials. Aggregates, admixtures and practical design of mixes. Manufacture, curing and testing, including non-destructive methods. Statistical approach to quality control. Time-dependent behaviour and durability of concrete. The principles for appropriate selection of materials and techniques for repair, maintenance and strengthening of civil engineering structures. Investigation and diagnosis. Corrosion of reinforcement. Alkali-aggregate reaction, sulphate attack. Physical degradation. Repair materials. Protective systems. Systems for repair.

    View more

  • Module content:

    A research term paper will be prepared.

    Introduction to structural reliability, tension elements, buckling of plates in compression elements, compression elements, beams and plate girders, plastic analysis and design of structures and structural elements, connections, composite design and steel-framed structures.

    View more

  • Module content:

    A research term paper will be prepared.

    Material properties. Behaviour and analysis of reinforced concrete members for flexure, axial loads, flexure plus axial load and shear. Cracking and deflection (short- and long-term) of flexural members. Plasticity in flexural members. Braced and unbraced slender columns.

    View more

  • Module content:

    A research term paper will be prepared.

    Stiffness and flexibility methods for plane, grid and three-dimensional structures.In-plane stability of beam-columns and frames; effective lengths and lateral torsional instability of beams. Dynamics: free and forced, undamped and damped framed systems and mass matrices and natural frequencies.

    View more

  • Module content:

    A research term paper will be prepared.

    This module will cover the following topics: Asset Management principles, Maintenance Management principles, Maintenance strategies and philosophies, Condition based Maintenance, Reliability Centred Maintenance (RCM), Resource Management, Maintenance Management Systems, Total Productive Maintenance (TPM) and Risk Management. Maintenance management of the following disciplines will be studied in detail: Road infrastructure, Railway infrastructure, Airport infrastructure, Buildings and other structures, Water resources and water supply.

    View more


The information published here is subject to change and may be amended after the publication of this information. The General Regulations (G Regulations) apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the General Rules section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.

Copyright © University of Pretoria 2024. All rights reserved.

FAQ's Email Us Virtual Campus Share Cookie Preferences