Code | Faculty | Department |
---|---|---|
12240122 | Faculty of Engineering, Built Environment and Information Technology | Department: Civil Engineering |
Credits | Duration | NQF level |
---|---|---|
Minimum duration of study: 1 year | Total credits: 128 | NQF level: 08 |
Refer also to G16-G29.
The curriculum is determined in consultation with the relevant heads of departments. A student is required to pass modules to the value of at least 128 credits.
The degree is awarded on the basis of examinations only.
Refer also to G18 and G26.
A student passes with distinction if he or she obtains a weighted average of at least 75% (not rounded) in the first 128 credits for which he or she has registered (excluding modules which were discontinued timeously). The degree is not awarded with distinction if a student fails any one module (excluding modules which were discontinued timeously). The degree must be completed within the prescribed study period.
University of Pretoria Programme Qualification Mix (PQM) verification project
The higher education sector has undergone an extensive alignment to the Higher Education Qualification Sub-Framework (HEQF) across all institutions in South Africa. In order to comply with the HEQSF, all institutions are legally required to participate in a national initiative led by regulatory bodies such as the Department of Higher Education and Training (DHET), the Council on Higher Education (CHE), and the South African Qualifications Authority (SAQA). The University of Pretoria is presently engaged in an ongoing effort to align its qualifications and programmes with the HEQSF criteria. Current and prospective students should take note that changes to UP qualification and programme names, may occur as a result of the HEQSF initiative. Students are advised to contact their faculties if they have any questions.
Minimum credits: 128
Additional information
Not all elective modules are presented every year. Please confirm with the department which modules are presented in the current year before registering.
Core modules
All core modules are compulsory modules
Elective modules
Select the remainder of the credits from the Elective modules list.
Module content:
In the first part of this course, numerical procedures and some underlying theory for solving systems of equations, eigenvalue problems, integration, approximation and boundary value problems will be discussed. The second part of the course covers general finite element theory, discretization aspects related to geometry, nodes and numbering, element type and shape, interpolation functions, formulation of element characteristic matrices and vectors for elasticity problems, assembly and solution of the finite element equations, modelling procedures and results processing. The student will use Finite Element software to apply the theory that was covered in the course for solving typical Civil Engineering problems.
Module content:
*This is a compulsory module.
The course will require all honours students to conduct research in an appropriate field of civil engineering, linked to the main discipline in which the student specializes for their honours degree.
Module content:
A research term paper will be prepared.
Properties of concrete and concrete mixes. Characteristics of Portland cement and supplementary cementitious materials. Aggregates, admixtures and practical design of mixes. Manufacture, curing and testing, including non-destructive methods. Statistical approach to quality control. Time-dependent behaviour and durability of concrete. The principles for appropriate selection of materials and techniques for repair, maintenance and strengthening of civil engineering structures. Investigation and diagnosis. Corrosion of reinforcement. Alkali-aggregate reaction, sulphate attack. Physical degradation. Repair materials. Protective systems. Systems for repair.
Module content:
A research term paper will be prepared.
Introduction to structural reliability, tension elements, buckling of plates in compression elements, compression elements, beams and plate girders, plastic analysis and design of structures and structural elements, connections, composite design and steel-framed structures.
Module content:
A research term paper will be prepared.
Continuum mechanics. Classical and numerical (finite difference and finite element) solutions for plane and plate structures. Plasticity and failure criteria. Elastic stability. Non-linear analysis.
Module content:
A research term paper will be prepared.
Material properties. Behaviour and analysis of reinforced concrete members for flexure, axial loads, flexure plus axial load and shear. Cracking and deflection (short- and long-term) of flexural members. Plasticity in flexural members. Braced and unbraced slender columns.
Module content:
A research term paper will be prepared.
Timber properties, grading, treatment, structural form, element design and bracing of structures. Analysis of I-beams, composite beams, frames and connections. Research project.
Module content:
A research term paper will be prepared.
Stiffness and flexibility methods for plane, grid and three-dimensional structures.In-plane stability of beam-columns and frames; effective lengths and lateral torsional instability of beams. Dynamics: free and forced, undamped and damped framed systems and mass matrices and natural frequencies.
Module content:
A research term paper will be prepared.
Material properties; prestressing systems; flexural design; losses; effects of continuity; shear; deflections; anchorage; cracking; prestressed concrete slabs and detailing.
Module content:
A research term paper will be prepared.
This module will cover the following topics: Asset Management principles, Maintenance Management principles, Maintenance strategies and philosophies, Condition based Maintenance, Reliability Centred Maintenance (RCM), Resource Management, Maintenance Management Systems, Total Productive Maintenance (TPM) and Risk Management. Maintenance management of the following disciplines will be studied in detail: Road infrastructure, Railway infrastructure, Airport infrastructure, Buildings and other structures, Water resources and water supply.
Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App